ارزشیابی و مقابله با ریسک‌های ناشی از تصمیم‌گیری در فرایند ارزیابی انطباق

نوع مقاله: مقاله پژوهشی

نویسنده

مدیر کیفیت پژوهشگاه پلیمر و پتروشیمی ایران

چکیده

یک نوع خاص از ارزیابی انطباق که گاهی اوقات بازرسی نامیده می‌شود، جهت تعیین اینکه یک محصول الزامات معینی را برآورده می‌سازد، به اندازه‌گیری به عنوان منبع اصلی اطلاعات متکی است. در هر اندازه‌گیری ‌نتیجه به‌دست‌آمده همیشه دارای عدم‌قطعیت می‌باشد. به دلیل وجود عدم‌قطعیت در نتایج اندازه‌گیری همواره ریسک تصمیم‌گیری غلط در فرایند ارزیابی انطباق وجود دارد. تاکنون در خصوص نحوه ارزیابی این ریسک‌ها مطالعات زیادی انجام شده است. در بیش‌تر این مطالعات به ارزیابی ریسک‌های تصمیم‌گیری از منظر تولیدکننده با استفاده از دقت اندازه‌گیری و تغییرپذیری فرایند تولید پرداخته شده و مطالعات اندکی در خصوص ریسک‌های تصمیم‌گیری از منظر مصرف‌کننده با در نظر گرفتن عدم‌قطعیت اندازه‌گیری و تغییرپذیری فرایند تولید انجام شده است. بر این اساس در این مقاله همراه با یک مطالعه موردی نحوه ارزیابی ریسک‌های تصمیم‌گیری غلط از دو منظر تولیدکننده و مصرف‌کننده با استفاده از عدم‌قطعیت اندازه‌گیری و تغییرپذیری فرایند تولید به روش احتمال توام تشریح می‌شود و گزینه‌های مختلفی برای مقابله با این ریسک‌ها ارائه و بررسی می‌شوند. نتایج این پژوهش نشان می‌دهد که استفاده از عدم‌قطعیت اندازه‌گیری به‌جای دقت اندازه‌گیری در ارزیابی ریسک‌های تصمیم‌گیری غلط، براورد واقع‌بینانه‌تری از ریسک‌ها را ارائه می‌دهد و می‌توان با اصلاح قواعد تصمیم‌گیری در فرایند ارزیابی انطباق پیامدهای ناشی از این ریسک‌ها  را تعدیل نمود.

کلیدواژه‌ها


 [1]     "ISO 17000: Conformity assessment -- Vocabulary and general principles," in Terms relating to conformity assessment in general, ed. Switzerland: International Organization for Standardization (ISO), 2004.
[2]     "ISO/IEC GUIDE 98-4  Uncertainty of measurement-Part4: Role of measurement uncertainty in conformity assessment," ed. Switzerland: International Organization for Standardization (ISO), 2012.
[3]     "JCGM 106  Evaluation of measurement data – The role of measurement uncertainty in conformity assessment," ed. Joint Committee for Guides in Metrology (JCGM): BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML, 2012.
[4]     "ISO/IEC Guide 98-1  Uncertainty of measurement -- Part 1: Introduction to the expression of uncertainty in measurement," ed. Switzerland: International Organization for Standardization (ISO), 2009.
[5]     D. C. Montgomery, Introduction to statistical quality control, 7th ed. John Wiley & Sons, 2009.
[6]     "ISO/IEC Guide 98-4 (2012) Uncertainty of measurement-Part4: Role of measurement uncertainty in conformity assessment.," ed: International Organization for Standardization (ISO), Geneva.
[7]     ISO 9001 (2015) Quality management systems -- Requirements, 2015.
[8]     "ISO/IEC 17025 (2017) General requirements for the competence of testing and calibration laboratories," ed: International Organization for Standardization (ISO), Geneva.
[9]     ISO 31000 (2018): Risk management — Guidelines.
[10]   "Decision rules applied to conformity assessment," EUROLAB vol. Technical Report No.1, 2017.
[11]   A. R. Eagle, "A method for handling errors in testing and measuring," Industrial Quality Control, vol. 10, no. 3, pp. 10-15, 1954.
[12]   F. E. Grubbs and H. J. Coon, "On setting test limits relative to specification limits," Industrial Quality Control, vol. 10, no. 5, pp. 15-20, 1954.
[13]   J. Hayes, "Factors Affecting Measuring Reliability," US Naval Ordnance Laboratory, TM, no. 63-106, 1955.
[14]   H. Castrup, "Risk analysis methods for complying with Z540. 3," in Proc. NCSLI Workshop & Symposium, 2007.
[15]   D. Jackson, "Measurement risk analysis methods," in Proceedings of the Measurement Science Conference, 2005.
[16]   S. Mimbs, "ANSI/NCSL Z540.3: Measurement Decision Risk and the 2% Rule," NASA Presentation, March 2007.
[17]   S. F. Weber and A. P. Hillstrom, Economic model of calibration improvements for automatic test equipment. US Department of Commerce, National Bureau of Standards, 1984.
[18]   "NASA HANDBOOK Estimation and Evaluation of Measurement Decision Risk," NASA-HDBK-8739.19-4, 2010.
[19]   IEC, "IEC 31010 (2019) Risk management–Risk assessment techniques," 2019.
[20]   H. Castrup, "Analytical Metrology SPC Methods for ATE Implementation," in Proc. NCSL 1991 Workshop and Symposium, Albuquerque, July, 1991, vol. 13: Citeseer.
[21]   ASME B89.7.4.1 (2005) Measurement Uncertainty and Conformance Testing: Risk Analysis, 2005.
[22]   "ISO/IEC Guide 98-3 (2008) Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (GUM:1995).", ed: International Organization for Standardization (ISO), Geneva.
[23]   L. R. Pendrill, "Using measurement uncertainty in decision-making and conformity assessment," Metrologia, vol. 51, no. 4, p. S206, 2014, doi: 10.1088/0026-1394/51/4/S206.
[24]   L. R. Pendrill and H. Källgren, "Optimized measurement uncertainty and decision-making in the metering of energy, fuel, and exhaust gases," (in English), Measurement Techniques, vol. 51, no. 4, pp. 370-377, 2008/04/01 2008, doi: 10.1007/s11018-008-9047-8.
[25]   P. Pereira, B. Magnusson, E. Theodorsson, J. O. Westgard, and P. Encarnação, "Measurement uncertainty as a tool for evaluating the ‘grey zone’ to reduce the false negatives in immunochemical screening of blood donors for infectious diseases," Accreditation and Quality Assurance, journal article vol. 21, no. 1, pp. 25-32, 2016, doi: 10.1007/s00769-015-1180-x.
[26]   ILAC G8 (2019) Guidelines on Decision Rules and Statements of Conformity, 2019.
[27]   A. W. E. Bettencourt da Silva, "Eurachem /CITAC Guide: Setting and Using Target Uncertainty in Chemical Measurement, ," vol. Available from www.eurachem.org, 2015.
[28]   S. L. R. E. a. A. W. (Eds), "Use of uncertainty information in compliance assessment," ed: Eurachem (http://www. eurachem. org), 2007.
[29]   M. Dastmardi, M. Mohammadi, and B. Naderi, "Optimizing measurement uncertainty to reduce the risk and cost in the process of conformity assessment," Accreditation and Quality Assurance, vol. 23, no. 1, pp. 19-28, 2018.
[30]   J. H. Lee, J. H. Choi, J. S. Youn, Y. J. Cha, W. Song, and A. J. Park, "Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty," (in eng), Clin Chem Lab Med, vol. 53, no. 7, pp. 1025-32, Jun 2015, doi: 10.1515/cclm-2014-0801.
[31]   E. Hund, D. L. Massart, and J. Smeyers-Verbeke, "Comparison of different approaches to estimate the uncertainty of a liquid chromatographic assay," Analytica Chimica Acta, vol. 480, no. 1, pp. 39-52, 3/17/ 2003, doi: http://dx.doi.org/10.1016/S0003-2670(02)01591-X.
[32]   D. Theodorou, L. Meligotsidou, S. Karavoltsos, A. Burnetas, M. Dassenakis, and M. Scoullos, "Comparison of ISO-GUM and Monte Carlo methods for the evaluation of measurement uncertainty: Application to direct cadmium measurement in water by GFAAS," Talanta, vol. 83, no. 5, pp. 1568-1574, 2/15/ 2011, doi: http://dx.doi.org/10.1016/j.talanta.2010.11.059.
[33]   ISO/IEC 31010 (2019): Risk management – Risk assessment techniques.
[34]   "ISO/IEC Guide 98-3 Suppl.1 (2008) Guide to the expression of uncertainty in measurement (GUM:1995)    Supplement 1: Propagation of distributions using a Monte Carlo method.," ed: International Organization for Standardization (ISO), Geneva.
[35]   Measurement Systems Analysis Reference Manual 2010.
[36]   H. Castrup, "Uncertainty analysis and parameter tolerancing," in Proc. NCSL Workshop & Symposium, 1995.
[37]   K. H. Pendrill L, Fischer N, Demeyer S, Allard A, "EURAMET: A guide to decision-making and conformity assessment. ," http://publikationer.extweb.sp.se/ViewDocument.aspx?RapportId=294882015.
[38]   D. Theodorou and F. Zannikos, "The use of measurement uncertainty and precision data in conformity assessment of automotive fuel products," Measurement, vol. 50, pp. 141-151, 4// 2014, doi: http://dx.doi.org/10.1016/j.measurement.2013.12.029.
[39]   Decision rules applied to conformity assessment, T. R. N. (2017).
[40]   "Technical Report No.1 - Decision rules applied to conformity assessment," 2017.
[41]   "ASME B89.7.3.1 (2001) Guidelines for Decision Rules: Considering Measurement Uncertainty in Determining Conformance to Specifications," ed: American Society of Mechanical Engineers (ASME), 2001.
[42]   L. R. Pendrill, "Optimised measurement uncertainty and decision-making when sampling by variables or by attribute," Measurement, vol. 39, no. 9, pp. 829-840, 11// 2006, doi: 10.1016/j.measurement.2006.04.014.
[43]   G. Beges, J. Drnovsek, and L. Pendrill, "Optimising calibration and measurement capabilities in terms of economics in conformity assessment," (in English), Accreditation and Quality Assurance, vol. 15, no. 3, pp. 147-154, 2010/03/01 2010, doi: 10.1007/s00769-009-0599-3.