طراحی آماری- اقتصادی نمودار کنترلی EWMA برای پایش میانگین فرایند تحت نمونه-گیری مجموعه‌ی رتبه‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگر

2 تخصص: نمودارهای کنترلی، استنباط بیزی

3 استاد، دانشگاه علامه طباطبایی، گروه آمار، تهران، ایران

چکیده

اگر شناسایی تغییرات کوچک در فرایند تولید مد نظر باشد، نمودار کنترلی میانگین متحرک موزون نمایی (EWMA) جایگزین مناسبی برای نمودار کنترلی X ̅ است. در شرایطی که به‌‌علت محدودیت‌های اقتصادی نتوان نمونه بزرگ از جامعه استخراج کرد، طرح نمونه‌گیری تصادفی ساده (SRS) ممکن است از دقت کافی برخوردار نباشد، که در این صورت می‌توان از طرح نمونه‌گیری مجموعه‌ی رتبه‌‌ای (RSS) استفاده نمود. در این مقاله برای اولین بار طراحی اقتصادی و آماری- اقتصادی نمودار کنترلی EWMA تحت طرح RSS بررسی شده است. با ارائه‌ی نتایج‌ عددی، مزایای طراحی آماری-اقتصادی به طراحی اقتصادی نشان داده شده است. نتایج نشان می‌دهد که هزینه‌ها در طراحی آماری-اقتصادی نسبت به طراحی اقتصادی با اندک تغییری افزایش یافته است، اما به‌دلیل پایین بودن نرخ هشدار نادرست با اهداف کنترل کیفیت آماری هم‌راستا بوده و هم‌زمان با کاهش هزینه‌ها، کیفیت محصول را در سطح مطلوبی از خطا و توان بالا، کنترل می‌کند.

کلیدواژه‌ها


 
[1] Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics1(3), 239-250.
[2] Montgomery, D. C., Gardiner, J. S., & Pizzano, B. A. (1987). Statistical process control methods for detecting small process shifts. Frontiers in Statistical Quality Control3, 161-178.
[3] Albin, S. L., Kang, L., & Shea, G. (1997). An X and EWMA chart for individual observations. Journal of Quality Technology29(1), 41-48.
 [4] Srivastava, M. S., & Wu, Y. (1993). Comparison of EWMA, CUSUM and Shiryayev-Roberts procedures for detecting a shift in the mean. The Annals of Statistics21(2), 645-670.
 [5] Wu, Z., & Spedding, T. A. (2000). A synthetic control chart for detecting small shifts in the process mean. Journal of Quality Technology32(1), 32-38.
 [6] Abbas, N., Riaz, M., & Does, R. J. (2011). Enhancing the performance of EWMA charts. Quality and ReliabilityEngineering International27(6), 821-833.
[7] Mughal, M., Azam, M., & Aslam, M. (2018). An EWMA-DiD Control Chart to Capture Small Shifts in the Process Average Using Auxiliary Information. Technologies6(3), 69.
[8] Khan, H., Farooq, S., Aslam, M., & Khan, M. A. (2018). Exponentially Weighted Moving Average Control Charts for the Process Mean Using Exponential Ratio Type Estimator. Journal of Probability and Statistics2018.
[9] Naveed, M., Azam, M., Khan, N., & Aslam, M. (2018). Design of a Control Chart Using Extended EWMA Statistic. Technologies6(4), 108.
 [10] McIntyre, G. A. (1952). A method for unbiased selective sampling, using ranked sets. Australian Journal of Agricultural Research3(4), 385-390.
[11] Halls, L. K., & Dell, T. R. (1966). Trial of ranked-set sampling for forage yields. Forest Science12(1), 22-26.
[12] Takahasi, K., & Wakimoto, K. (1968). On unbiased estimates of the population mean based on the sample stratified by means of ordering. Annals of the Institute of Statistical Mathematics20(1), 1-31.
[13] Dell, T. R., & Clutter, J. L. (1972). Ranked set sampling theory with order statistics background. Biometrics, 545-555.
[14] Lynne Stokes, S. (1977). Ranked set sampling with concomitant variables. Communications in Statistics-Theory and Methods6(12), 1207-1211.
[15] Sinha, B. K., Sinha, B. K., & Purkayastha, S. (1996). On some aspects of ranked set sampling for estimation of normal and exponential parameters. Statistics & Risk Modeling14(3), 223-240.
[16] Lee, M. H. (2013, April). The three statistical control charts using ranked set sampling. In 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO) (pp. 1-6). IEEE
[17] Abujiya, M. A. R., Lee, M. H., & Riaz, M. (2014). Improving the performance of exponentially weighted moving average control charts. Quality and Reliability Engineering International30(4), 571-590.
[18] Haq, A., Brown, J., Moltchanova, E., & Al‐Omari, A. I. (2015). Improved exponentially weighted moving average control charts for monitoring process mean and dispersion. Quality and Reliability Engineering International31(2), 217-237.
[19] Haq, A., Brown, J., & Moltchanova, E. (2015). New exponentially weighted moving average control charts for monitoring process mean and process dispersion. Quality and Reliability Engineering International31(5), 877-901.
[20] Haq, A., Brown, J., Moltchanova, E., & Al-Omari, A. I. (2015). Effect of measurement error on exponentially weighted moving average control charts under ranked set sampling schemes. Journal of Statistical Computation and Simulation85(6), 1224-1246.
[21] Tayyab, M., Noor-ul-Amin, M., & Hanif, M. (2018). Exponential Weighted Moving Average Control Charts for Monitoring the Process Mean Using Pair Ranked Set Sampling Schemes. Iranian Journal of Science and Technology, Transactions A: Science, 1-10.
[22] Awais, M., & Haq, A. (2018). An EWMA chart for monitoring process mean. Journal of Statistical Computation and Simulation88(5), 1003-1025.
[23] رستمی، ع.، شجاعی علی آبادی، س.ر. و بامنی‌مقدم، م. (1397). طراحی آماری- اقتصادی نمودار کنترلی  برای پایش میانگین فرایند تحت نمونه­گیری مجموعه­ی رتبه‌ای، مجله‌ی مهندسی و مدیریت کیفیت، پاییز، جلد 8، شماره 3.
 
[24] Kaur, A., Patil, G. P., Shirk, S. J., & Taillie, C. (1996). Environmental sampling with a concomitant variable: a comparison between ranked set sampling and stratified simple random sampling. Journal of Applied Statistics23(2-3), 231-256.
[25] Nahhas, R. W., Wolfe, D. A., & Chen, H. (2002). Ranked set sampling: cost and optimal set size. Biometrics58(4), 964-971.
[26]Wang, Y. G., Chen, Z., & Liu, J. (2004). General ranked set sampling with cost considerations. Biometrics60(2), 556-561.
[27] Montgomery, D. C., Torng, J. C. C., Cochran, J. K., & Lawrence, F. P. (1995). Statistically constrained economic design of the EWMA control chart. Journal of Quality Technology27(3), 250-256.
[28] Linderman, K., & Love, T. E. (2000). Economic and economic statistical designs for MEWMA control charts. Journal of Quality Technology32(4), 410-417.
[29] Lorenzen, T. J., & Vance, L. C. (1986). The economic design of control charts: a unified approach. Technometrics28(1), 3-10.
[30] Muttlak, H. A., & Abu-Dayyeh, W. (1998). Testing some hypotheses about the normal distribution using ranked set sample: a more powerful test. Journal of Information and Optimization Sciences19(1), 1-11.
[31] Patil, G. P., Sinha, A. K., & Taillie, C. (1994). 5 Ranked set sampling. Handbook of statistics12, 167-200.
 [32] Brook, D. A. E. D., & Evans, D. A. (1972). An approach to the probability distribution of CUSUM run length. Biometrika59(3), 539-549.
[33] Saccucci, M. S., & Lucas, J. M. (1990). Average run lengths for exponentially weighted moving average control schemes using the Markov chain approach. Journal of Quality Technology22(2), 154-162.
 [34] Testik, M. C., McCullough, B. D., & Borrar, C. M. (2006). The effect of estimated parameters on Poisson EWMA control charts. Quality Technology & Quantitative Management3(4), 513-527.