ارائه رویکردی برای پایش پارامترهای پروفایلهای‌ خطی ساده در فرآیندهای تولید کوتاه مدت در فاز 2

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، دانشگاه پیام نور، مرکز تهران شمال

2 گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شاهد

3 گروه مهندسی صنایع، دانشگاه شاهد

چکیده

امروزه به دلیل تنوع تقاضای مشتری و حضور کوتاه محصول در بازار، استراتژی ساخت و تولید به سمت فرایندهای تولید کوتاه مدت سوق یافته است. در این شرایط فاز 1 نمودار کنترل نمی‌‌تواند انجام شود و برآوردهای صحیحی برای پارامترهای فرآیند در دسترس نمی‌باشد، لذا طراحی نمودارهای کنترل جدید برای پایش چنین فرایندهایی ضروری است. همچنین گاهی کیفیت به وسیله رابطه‌ای بین یک متغیر پاسخ و یک متغیر مستقل توصیف می‌شود که به آن پروفایل خطی ساده گفته می‌شود. در این مقاله به منظور پایش پارامترهای پروفایلهای خطی ساده در فرایندهای تولید کوتاه مدت، سه نمودار در فاز 2 طراحی شده است که توانایی پایش پارامترهای پروفایل مذکور را داشته و بروزرسانی آنها را از همان ابتدای فرآیند مدنظر قرار می‌دهد. عملکرد نمودارهای پیشنهادی با نمودار کنترل رقیب بر اساس معیار متوسط طول دنباله مقایسه شده است. نتایج بیانگر عملکرد مناسب نمودارهای کنترل پیشنهادی درکشف تغییرات متوسط و بزرگ می‌باشد.

کلیدواژه‌ها


[1]Kang, L. & Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. Journal of Quality Technology, 32(4), 418-426.
[2] Kim, K., Mahmoud, M. A. & Woodall, W. H. (2003). On the monitoring of linear profiles. Journal of Quality Technology, 35(3), 317-347.
[3]Khedmati, M. & Niaki, S.T.A. (2016).  Monitoring simple linear profiles in multistage processes by a MaxEWMA control chart. Computers & Industrial Engineering, 98, 125-143.
[4]Saghaei, A., Mehrjoo, M., & Amiri, A. (2010). Monitoring simple linear profiles using cumulative sum control charts.  Amirkabir Journal of Science & Research- Mechanical Engineering, 41(2), 73-82 (In Persian).
[5]Soleimani, P., Noorossana, R. & Amiri, A. (2009). Simple linear profiles monitoring in the presence of within profile autocorrelation. Computers & Industrial Engineering, 57(3), 1015-1021.
[6] Kazemzadeh, R. B., Amiri, A., & Kouhestani, B. (2016). Monitoring simple linear profiles using variable sample size schemes. Journal of Statistical Computation and Simulation, 86(15), 2923-2945.
[7] Niaki, S.T.A., Abbasi, B., & Arkat, J. (2007).A generalized linear statistical model approach to monitor profiles. International Journal of Engineering Transactions A Basics, 20(3), 233-242.
[8]Noorossana, R., Fatemi, S.A., & Zerehsaz, Y. (2015). Phase II monitoring of simple linear profiles with random explanatory variables. The International Journal of Advanced Manufacturing Technology, 779-787.
[9]Zhang, J., Li, Z. & Wang, Z. (2009). Control chart based on likelihood ratio for monitoring linear profiles. Computational Statistics & Data Analysis, 53(4), 1440-1448.
 
[10]Kazemzadeh, R.B., Noorossana, R. & Amiri, A. (2010). PhaseII monitoring of autocorrelated polynomial profiles in AR(1) processes, Scientia Iranica, Transactions E: Industrial Engineering,17(1),12-24.
[11]Amiri A., Eyvazian, M., Zou, C. & Noorossana R. (2012). A parameters reduction method for monitoring multiple linear regression profiles. The International Journal of Advanced Manufacturing Technology, 58(5-8), 621-629.
[12]Amiri A., Saghaei A., Mohseni, M. & Zerehsaz, Y. (2014). Diagnosis aids in multivariate multiple linear regression profiles monitoring .Communications in Statistics-Theory and Methods, 43(14), 3057-3079.
[13] Ghashghaei, R., & Amiri. A. (2017). Sum of squares control charts for monitoring of multivariate multiple linear regression profiles in phase II. Quality and Reliability Engineering International, 33, 767-784.
 
[14] Ahmadi Yazdi, A., Hamadani, A. Z. &   Amiri, A. (2019). Phase ΙΙ monitoring of multivariate simple linear profiles with estimated parameters. Journal of Industrial Engineering International, 5(4), 557-570
 
[15] Ahmadi Yazdi, A., Hamadani, A. Z., Amiri, A. & Grzegorczyk, M. (2019). A new Bayesian multivariate exponentially weighted moving average control chart for phase ΙΙ monitoring of multivariate multiple linear profiles. Quality and Reliability Engineering International, 35(7), 2152-2177.
 
[16] Hillier F. S. (1969). X-bar and R-chart control limits based on a small number of subgroups. Journal of Quality Technology, 1(1), 17-26.
 
[17] Yang, C. H. & Hillier, F. S. (1970). Mean and variance control chart limits based on a small number of subgroups. Journal of Quality Technology, 2(1), 9-16.
 
[18] Quesenberry, C. P. (1991). SPC Q charts for start-up processes and short or long runs. Journal of Quality Technology, 23(3), 213-224.
[19] Quesenberry, C. P. (1991). SPC Q charts for a binomial parameter p: short or long runs. Journal of Quality Technology, 23(3), 239-246.
[20] Quesenberry, C.P. (1991). SPC Q charts for a poisson parameter l: short or long runs. Journal of Quality Technology, 23(4), 296-303.
[21] Li, Z., Luo,Y., & Wang, Z. (2010). CUSUM of Q chart with variable sampling intervals for monitoring the process mean. International Journal of Production Research, 48(16), 4861-4876.
[22]  Li, Z., & Wang, Z. (2010). Adaptive CUSUM of Q chart. International Journal of Production Research, 48(5),1287-1301.
 [23]Kawamura, H., Nishina, K., Higashide, M. & Suzuki T. (2013). Application of Q charts for short run autocorrelated data. International Journal of Innovative Computing Information and Control, 9(6), 3667-3676.
 [24]Hawkins, D. M. (1987). Self-starting CUSUM charts for location and scale, The Statistician, 36(4),299-316.
 [25] Quesenberry, C. P. (1995). On properties of Q charts for variables. Journal of Quality Technology, 27(3), 184-203.
[26]Sullivan, J. H., & Jones, L. A.. (2002). A self-starting control chart for multivariate individual observations, Technometrics, 44(1), 24-33.
[27] Zantek, P. F. (2006). Design of cumulative sum schemes for start-up processes and short runs. Journal of Quality Technology, 38(4), 365-375.
[28]Zou, C., Zhou, C., Wang, Z. & Tsung, F. (2007). A self-starting control chart for linear profiles. Journal of Quality Technology, 39(4), 364-375.
[29]Amiri, A., Khosravi, P. & Ghashghaei, R. (2016). A self-starting control chart for simultaneous monitoring of mean and variance of simple linear profiles, International Journal of Engineering, Transactions C: Aspects, 29(9), 1257-1266.
[30]Tsung, F. & Xia, Z. (2019). A computationally efficient self-starting scheme to monitor general linear profiles with abrupt changes. Quality Technology & Quantitative Management, 16(3), 278-296.
[31]Khosravi, P. & Amiri, A. (2019). Self-Starting control charts for monitoring logistic regression profiles. Communications in Statistics-Simulation and Computation, 48(6), 1860-1871.
[32] Ravichandran, J. (2019). Self-starting X-bar control chart based on Six Sigma quality and sometimes pooling procedure. Journal of Statistical Computation and Simulation, 89(2), 362-377
[33] Sogandi, F., Mousavi, S. M. & Amiri, A. (2018). Self-starting control chart and post signal diagnostics for monitoring project earned value management indices. Journal of International and Systems Engineering, 11(2), 85-100.
[34] Zhang, G., Chen, G. & Castagliola, P. (2009). On t and EWMA t charts for monitoring changes in the process mean. Quality and Reliability Engineering International, 25(8), 933-945
[35]Celano, P., Castagliola, P., Trovato, E. & Fichera, S. (2011). Shewhart and EWMA t control charts for short production runs. Quality and Reliability Engineering International, 27(3), 313-326.
[36]Hawkins, D. M., Qiu, P. & Kang, C. W. (2003).The change point model for statistical process control. Journal of Quality Technology, 35(4), 355-366.
[37]Hawkins, D. M. & Zamba, K. D. (2005). A change point model for a shift in variance. Journal of Quality Technology, 37(1), 21-31.
[38] Hawkins, D. M. & Zamba, K. D. (2005). Statistical process control for shifts in mean or variance using a change point formulation. Technometrics, 47(2), 164-172.
 [39]Zamba, K. D. & Hawkins, D. M. (2006).A multivariate change point model for statistical  process control. Technometrics, 48(4), 539-549.
[40]Zhou, C., Zou, C., Zhang, Y. & Wang, Z. (2009).Nonparametric control chart based on change-point model. Statistical Papers, 50(1), 13-28.
 [41] Zou, C., Tsung, F. & Wang, Z. (2007). Monitoring general linear profiles using multivariate EWMA schemes. Technometrics, 49(4), 395-408.