مطالعه از هم گسیختگی میکرو قطرات در فرآیند تولید پوشش های سطحی با استفاده از مدل قابلیت اطمینان در داده های سانسور شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک - دانشکده مهندسی - دانشگاه پیام نور

2 عضو هیات علمی گروه آمار، دانشگاه آزاد اسلامی لاهیجان

چکیده

میکرو پوشش‌ها کاربرد وسیعی در تولیدات صنعتی نوین دارند. از هم پاشیدگی میکرو قطرات در حین برخورد با سطح، باعث کاهش کیفیت پوشش ایجاد شده بر روی سطح می گردد. فشار دستگاه پاشش یکی از مهمترین عوامل از هم گسیختگی میکرو قطرات است. در این تحقیق تاثیر فشار بر روی قطر از هم گسیختگی میکرو ذرات توسط مدل قابلیت اطمینان بر اساس نمونه سانسور شده مطالعه شده است. برای محاسبه مدل قابلیت اطمینان از توزیع رایلی نمایی شده معکوس به عنوان توزیع برازنده داده‌ها، استفاده گردیده و برآوردگر درستنمایی ماکزیمم پارامترهای مدل، محاسبه شده است. همچنین بر اساس الگوریتم متروپلیس-هاستینگس پارامترهای مجهول برآورد شده‌اند. نتایج نشان می دهد که مدل قابلیت اطمینان معرفی شده، عملکرد خوبی در برآورد احتمال از هم گسیختگی میکرو قطرات در فشارهای مختلف پاشش دارد. بر اساس مدل پیشنهادی، مشاهده گردیده است که با افزایش فشار نازل، قطر از هم گسیختگی میکرو قطرات کاهش می یابد.

کلیدواژه‌ها


[1] Thoroddsen, S. T., Takehara, K., & Etoh, T. G. (2012). Micro-splashing by drop impacts. Journal of Fluid Mechanics, 706, 560-570
[2] Palacios, J., Hernández, J., Gómez, P., Zanzi, C., & López, J. (2013). Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces. Experimental Thermal and Fluid Science, 44, 571-582.
[3] Liang, G. Guo,Y. Yang, Y. Zhen, N. & Shen, S, (2013). Spreading and splashing during a single drop impact on an inclined wetted surface. Acta Mechanica, 224, 2993-30.
[4] Planche, M.-P.  Khatim, O. Dembinski, L. Bailly, Y. & Coddet, C. (2013). Evaluation of the splats properties and relation with droplets diameters in atomization process using a de laval nozzle. Materials Chemistry and Physics, 137, 681-688.
[5] Kim, H., Park, U., Lee, C., Kim, H., Hwan Kim, M., & Kim, J. (2014). Drop splashing on a rough surface: How surface morphology affects splashing threshold. Applied Physics Letters, 104(16), 161608.
[6] San Lee, J., Park, S. J., Lee, J. H., Weon, B. M., Fezzaa, K., & Je, J. H. (2015). Origin and dynamics of vortex rings in drop splashing. Nature communications, 6(1), 1-8.
[7] De Goede, T. C., Laan, N., De Bruin, K. G., & Bonn, D. (2017). Effect of wetting on drop splashing of Newtonian fluids and blood. Langmuir, 34(18), 5163-5168.
[8] Yang, S., An, Y., & Liu, Q. (2017). Effect of viscosity on motion of splashing crown in high speed drop impact. Applied Mathematics and Mechanics, 38(12), 1709-1720.
[9] Latka, A., Boelens, A. M., Nagel, S. R., & de Pablo, J. J. (2018). Drop splashing is independent of substrate wetting. Physics of Fluids, 30(2), 022105.
[10] Kittel, H. M., Alam, E., Roisman, I. V., Tropea, C., & Gambaryan-Roisman, T. (2018). Splashing of a Newtonian drop impacted onto a solid substrate coated by a thin soft layer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 553, 89-96.
[11] Yang, H., Sun, K., Xue, Y., Xu, C., Fan, D., Cao, Y., & Xue, W. (2019). Controllable drop splashing on picosecond laser patterned hybrid superhydrophobic/-philic surfaces. Applied Surface Science, 481, 184-191.
[12]. پناهی، ه.، و اسدی، س. (1397). پیش‌بینی پخش شدن نانو قطرات بر روی سطح با استفاده از مدل رگرسیون غیر خطی چند متغیره. مواد پیشرفته و پوشش های نوین، 7، 1881-1886.
[13] Popov, G., & Anguelov, K. (2018). Application of stress strength analysis for investigation of investments in heterogeneous assets. In AIP Conference Proceedings (Vol. 2048, No. 1, p. 060033). AIP Publishing LLC.
[14] Dey, S., Mazucheli, J., & Anis, M. Z. (2017). Estimation of reliability of multicomponent stress–strength for a Kumaraswamy distribution. Communications in Statistics-Theory and Methods, 46(4), 1560-1572.
[15] Ghitany, M. E., Al-Mutairi, D. K., & Aboukhamseen, S. M. (2015). Estimation of the reliability of a stress-strength system from power Lindley distributions. Communications in Statistics-Simulation and Computation, 44(1), 118-136.
[16] Raqab, M. Z., & Kundu, D. (2005). Comparison of different estimators of P [Y< X] for a scaled Burr type X distribution. Communications in Statistics—Simulation and Computation, 34(2), 465-483.
[17] Kayal, T., Tripathi, Y. M., & Rastogi, M. K. (2018). Estimation and prediction for an inverted exponentiated Rayleigh distribution under hybrid censoring. Communications in Statistics-Theory and Methods, 47(7), 1615-1640.
[18] Panahi, H., & Moradi, N. (2020). Estimation of the inverted exponentiated Rayleigh distribution based on adaptive type II progressive hybrid censored sample. Journal of Computational and Applied Mathematics, 364, 112345.
[19] Balakrishnan, N., Balakrishnan, N., & Aggarwala, R. (2000). Progressive censoring: theory, methods, and applications. Springer Science & Business Media.
[20] Wu, S. J., & Kuş, C. (2009). On estimation based on progressive first-failure-censored sampling. Computational Statistics & Data Analysis, 53(10), 3659-3670.
[21] Soliman, A. A., Abd-Ellah, A. H., Abou-Elheggag, N. A., & Abd-Elmougod, G. A. (2012). Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data. Computational Statistics & Data Analysis, 56(8), 2471-2485.
[22] Lio, Y. L., & Tsai, T. R. (2012). Estimation of δ= P (X< Y) for Burr XII distribution based on the progressively first failure-censored samples. Journal of Applied Statistics, 39(2), 309-322.
[23] Ahmed, E. A. (2017). Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application. Journal of Applied Statistics, 44(9), 1576-1608.
[24] Panahi, H. (2018). Inference for exponentiated Pareto distribution based on progressive first-failure censored data with application to cumin essential oil data. Journal of Statistics and Management Systems, 21(8), 1433-1457.
[25] Dube, M., Krishna, H., & Garg, R. (2016). Generalized inverted exponential distribution under progressive first-failure censoring. Journal of Statistical Computation and Simulation, 86(6), 1095-1114.
[26] Team, R. C. (2014). R: A Language and Environment for Statistical Computing http://www. R-project. org.
[27] Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
[28] Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), 461-464.
[29] Balakrishnan, N., & Sandhu, R. A. (1995). A simple simulational algorithm for generating progressive Type-II censored samples. The American Statistician, 49(2), 229-230.