طراحی آماری اقتصادی نمودار کنترلی برای مشاهدات انفرادی از توزیع نمایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آمار، دانشکده علوم ریاضی، دانشگاه تبریز

2 دانشگاه صنعتی بیرجند

چکیده

در این مقاله برای مشخصه‌های کیفی انفرادی که دارای توزیع نمایی هستند، یک نمودار کنترلی با طراحی آماری اقتصادی ارائه شده است. بدین منظور ابتدا با استفاده از تقریبی که توسط نلسون پیشنهاد شده است، توزیع نمایی مشاهدات انفرادی را به توزیع نرمال تبدیل کرده‌ایم. سپس با استفاده از مدل اقتصادی کاستا و رحیم یک طرح آماری اقتصادی را برای مشاهدات تبدیل یافته به دست آورده‌ایم. به منظور بهینه‌سازی پارامترهای مدل که بر اساس پارامترهای طرح محاسبه می‌شوند، مقادیر بهینه پارامترهای طرح را با استفاده از الگوریتم زنبور عسل بدست آورده‌ایم. در پایان، نتایج پارامترهای آماری اقتصادی نمودار کنترلی بیان شده با طرح اقتصادی مقایسه شده و عملکرد مثبت طرح آماری اقتصادی در مقایسه با طرح اقتصادی نشان داده شده است. همچنین به‌وسیله داده‌های شبیه‌سازی شده از توزیع نمایی، کارایی و عملکرد نمودار کنترلی معرفی شده در مقایسه با حالتی که توزیع مشخصه کیفی نرمال فرض می‌شود، بررسی شده است

کلیدواژه‌ها


[1] Lingyun Zhang, Mark Bebbington, Chin-Diew Lai and KondaswamyGovindaraju. (2005). On Statistical Design of the S2 Control Chart. Communication in Statistics- Theory and Methods, 34, 229-244..
[2] Erwin M. Saniga, Darwin J. Davis and James M. Lucas. (2004). Statistical Design of Attribute Charts for Monitoring and Continuous Improvement When Count Levels Are Low. Frontiers in Statistical Quality Control. 7, 119-129.
[3] Costa, A. F. B. and Rahim, M. A. (2001). Economic design of X-bar charts with variable parameters: the Markov chain approach. Journal of Applied Statistics, 28, 875-885.
[4] Lorenzen, T. J. and Vance, L. C. (1986). The economic design of control charts: a unified approach. Technometrics, 28, 3–10.
[5] Torabian, M., Moghadam, M. B. and Faraz, A. (2010). Economically Designed Hotelling’s T2control chart using VSICL scheme. The Arabian Journal for Science and Engineering, 35, 251–263.
[6] Saniga, E. M. (1989). Economic statistical control chart designs with an application to X-bar and R charts. Technometrics, 31, 313–320.
[7] Khadem and Bamenimoghadam (2019). Economic statistical design of -control charts: Modified version of Rahim and Banerjee (1993) model. Communications in Statistics - Simulation and Computation. 48, 684-703.
[8] Banerjee, P. K. and Rahim, M. A. (1988). Economic design of X-bar control charts under Weibull shock models. Technometrics, 30, 407-414.
[9] Fong-Jung Yu, Ching-Shih Tsou, Kai-I Huang and Zhang Wu. (2010). An Economic-Statistical Design of x Control Charts with Multiple Assignable Causes. Journal of Quality, 17, 327-337.
[10] Mohammadian, F and  Amiri, A. (2012). Economic‐Statistical Design of Acceptance Control Chart. Quality and Reliability Engineering International. 29, DOI: 10.1002/qre.1291.
[11] Zhang, G. and Berardi, V. (1997). Economic statistical design of X-bar control charts for systems with Weibull in-control times. Computers and Industrial Engineering, 32, 575–586.
[12] Bai, D. and Choi, I. (1995). andR-control charts for skewed populations, Journal of Quality Technology, 27(2), 120-131.
[13] Choobineh, F. and Ballard, J. (1987). Control-limits of QC Charts for skewed distributions using weighted-variance, Reliability, IEEE Transactions, 36(4), 473-477.
[14] Santiago, E. and Smith, J. (2013). Control charts based on the exponential distribution: Adapting runs rules for the t chart, Quality Engineering, 25(2), 85-96.
[15] Nelson, L. S. (1994). A control chart for parts-per-million nonconforming items. Journal of Quality Technology, 26, 239–240.
[16] Aslam, M., Azam, M., Khan, N. and Chi-Hyuck, J. (2015). control chart for an exponential distribution using multiple dependent state sampling. Qual Quant, 49, 455–462.
[17] Montgomeri, D. C.  (2009).Introduction to Statistical Quality Control, sixth edition. John Wiley & Sons. New York.
[18] Karaboga, D. and Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim, 39, 459–471.
[19] Karaboga, D. and Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214, 108–132.
[20] Tavakoli, M., Pourtaheri, R., Moghadam, M. B., (2016). Economic and economic-statistical designs of VSI Bayesian control chart using Monte Carlo method and ABC algorithm. Journal of Statistical Computation and Simulation,Vol. 87, NO. 4, 766-776