مدیریت کیفیت زنجیره تأمین با رویکرد مسیریابی کانال حمل و نقل و استفاده از الگوریتم ژنتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدیریت صنعتی، گروه مدیریت صنعتی، دانشگاه آزاد اسلامی واحد فیروزکوه،فیروزکوه، ایران،

2 مدیریت صنعتی، آزاد اسلامی ، فیروزکوه ، ایران

3 مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه آزاد اسلامی واحد فیروزکوه، فیروزکوه، ایران: زنجیره تأمین

چکیده

هدف این مقاله بررسی کیفیت کالا در فرآیند انتقال بین اعضای زنجیره تامین میباشد. برای این منظور مدل ریاضی مناسبی برای مدیریت مسیر کانال حمل و نقل طراحی و با استفاده از الگوریتم ژنتیک به حل مسئله پرداخته شده است. در تحقیق حاضر، با درنظرگرفتن شرایط دنیای واقعی از جمله محدودیت تردد وسایل و همچنین کیفیت کالا با در نظر گرفتن اقلام برگشتی بررسی می‌شود و همچنین از زنجیره مارکوف برای بررسی احتمال سالم ماندن کالا در فرآیند انتقال بین اعضای زنجیره تامین استفاده شده است. نوآوری این تحقیق معرفی سیستم انتخاب کانال برای برنامه‌ریزی حمل و نقل در زنجیره تأمین است. و مدیران را در حل مسائل بخش لجستیک به صورت مؤثری یاری میکند. نتایج این تحقیق نشان میدهد که روش مورد استفاده در این پژوهش عملکرد مناسبی دارد و نحوه بهینه جریان محصولات در یک شبکه توزیع با استفاده از الگوریتم ژنتیک ارائه شده است.

کلیدواژه‌ها


[1]. Zhang, M., Hu, H., & Zhao, X. (2020). Developing product recall capability through supply chain quality management. International Journal of Production Economics, 229, 107795.
[2]. Jafarnejad, C. A. (2002). Development of Strategy in Electronic Supply Chain Management National Conference on Logistics and Supply Chain of Iran.tehran.22-35. (Persian)
[3]. Forouzanfar, F., & Tavakkoli-Moghaddam, R. (2012). Using a genetic algorithm to optimize the total cost for a location-routing-inventory problem in a supply chain with risk pooling. Journal of Applied Operational Research, 4(1), 2-13.
[4]. Mirzaee, H., Nakhaee, A., kamal abadi, E. & zegordy, S.H. (2012). A New Algorithm for Solving the Routing Inventory Problem by Direct Sending. Scientific Research Journal of Production and Operations Management. 7.31-42. (Persian)
[5]. Hong, J., Liao, Y., Zhang, Y., & Yu, Z. (2019). The effect of supply chain quality management practices and capabilities on operational and innovation performance: Evidence from Chinese manufacturers. International Journal of Production Economics, 212, 227-235.
[6]. Modares, A. H. (2004). Comprehensive solution for supply chain transportation planning. the first national conference on logistics and supply chain. tehran.51-63 (Persian)
[7]. Liao, S. H., Hsieh, C. L., & Lai, P. J. (2011). An evolutionary approach for multi-objective optimization of the integrated location–inventory distribution network problem in vendor-managed inventory. Expert Systems with Applications, 38(6), 6768-6776.
[8]. Olivares-Benitez, E., González-Velarde, J. L., & Ríos-Mercado, R. Z. (2012). A supply chain design problem with facility location and bi-objective transportation choices. Top, 20(3), 729-753.
[9]. Bastas, A., & Liyanage, K. (2019). Integrated quality and supply chain management business diagnostics for organizational sustainability improvement. Sustainable Production and Consumption, 17, 11-30.
[10]. Sommerfeld, D., Teucke, M., & Freitag, M. (2018). Identification of sensor requirements for a quality data-based risk management in multimodal supply chains. Procedia CIRP, 72, 563-568.
[11]. Modak, N. M., Modak, N., Panda, S., & Sana, S. S. (2018). Analyzing structure of two-echelon closed-loop supply chain for pricing, quality and recycling management. Journal of Cleaner Production, 171, 512-528.
[12]. Altiparmak, F., Gen, M., Lin, L., & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & industrial engineering, 51(1), 196-215.
[13].Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122, 502-517.
[14]. Olivares-Benitez, E., Ríos-Mercado, R. Z., & González-Velarde, J. L. (2013). A metaheuristic algorithm to solve the selection of transportation channels in supply chain design. International Journal of Production Economics, 145(1), 161-172.
[15]. Pinto-Varela, T., Barbosa-Póvoa, A. P. F., & Novais, A. Q. (2011). Bi-objective optimization approach to the design and planning of supply chains: Economic versus environmental performances. Computers & Chemical Engineering, 35(8), 1454-1468.
[16]. Xiang, X., Fu, H., Zhou, J., Deng, Y., & Yang, X. (2021). Taboo rate and hitting time distribution of continuous-time reversible Markov chains. Statistics & Probability Letters, 169, 108969