نمودارهای کنترلی استوار برای داده‌های سری‌زمانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش البرز قزوین ایران

2 دانشگاه علامه طباطبایی

چکیده

از میان ابزارهای پر کاربردکنترل آماری فرایند، نمودارکنترلی مهم‌ترین و قدرتمند‌ترین ابزار کنترل آماری فرایند است . نمودارهای کنترل آماری فرایند در رابطه با کنترل فرایند از دو جنبه کامل نیستند.نمودارهای کنترل آماری فرایند طبق مشخصات طراحی انجام می‌پذیرد یا نه و دیگر این‌که نمودارهای کنترلی توانایی شناسایی علل غیر تصادفی و حذف آن‌ها را ندارند. در این مقاله نمودارهای کنترلی استوار برای داده‌های سری‌زمانی برای پی بردن به انحراف‌های با دلیل، معرفی می‌کنیم که داده‌های واقعی اجرای عملیات مرکز ساختمان‌های کشاورزی و بیوتکنولوژی کرج می‌باشدکه داده‌ها به صورت روزانه جمع‌آوری شده و نمودارهای کنترلی استوار و نمودارهای کنترلی استاندارد را برای داده‌های سری‌زمانی رسم می‌‌کنیم که انجام تجزیه و تحلیل آماری این طرح با استفاده از نرم‌افزار spss16صورت پذیرفته است و در نهایت با مقایسه کردن نمودارکنترلی استوار با نمودارکنترلی استاندارد برای داده‌های سری‌زمانی به این نتیجه می‌رسیم که نمودار کنترلی استوارکارایی مطلوبی نسبت به نمودار کنترلی استاندارد دارد.

کلیدواژه‌ها


). طراحی آماری-اقتصادی نمودار 1389 ] سیف، اصغر، ( 1[ 𝑇 کنترل - هتلینگ با اندازهی نمونه و حدود کنترل متغیر. پایان 2 نامهی دکتری، تهران، واحد علوم و تحقیقات. ). کنترل کیفیت آماری. چاپ 1384 ] بامنیمقدم، محمّد، ( 2[ اول، تهران، انتشارات دانشگاه پیام نور. ). کنترل کیفیت آماری. چاپ 1384 ] بامنیمقدم، محمّد، ( 3[ اول، تهران، انتشارات دانشگاه پیام نور. ). طراحی آماری- اقتصادی 1390 ] نجمی ساروقی، نسیبه، ( 4[ 𝑇 نمودار کنترلی چندمتغیرهی  هتلینگ با اندازهی نمونهی متغیر. 2 پایاننامهی کارشناسی ارشد، تهران، دانشکدهی اقتصاد، دانشگاه علامه طباطبایی.
[5] Alwan, L. C., & Roberts, H. V. "Time-series modeling for statistical process Control". Journal of Business & Economic Statisticst t (1988). 6(1), 87–95. [6] Nembhard, H. B., & Changpetch, P. (2007). Directed monitoring using cuscore charts for seasonal time series. Quality and Reliability Engineering International, 23,219–232. [7] Vander Wiel, S. (1996). Monitoring processes that wander using integrated moving everage models. Technometrics, 38(2). [8] Rocke, D. M. (1989). Robust control charts. Technometrics, 31(2), 173–184. Rocke, D. M. (1992). Xq and rq charts: Robust control charts. The Statistician, 41(1), 97–104. [9] Tatum, L. G. (1997). Robust estimation of the process standard deviation for control charts. Technometrics, 39(2), 127–141. [10] Vargas, J. A. (2003). Robust estimation in multivariate control charts for individual observations. Journal of Quality Technology, 35(4). [11] Alfaro, J., & Ortega, J. (2009). A comparison of robust alternatives to Hotelling’s T2 control chart. Journal of Applied Statistics, 36(12), 1385–1396.
-). سری1374 ] بزرگنیا و نیرومند، ابوالقاسم و حسینعلی، ( 12[ 3-6 های زمانی، تهران، دانشگاه پیام نور، ص ). تحلیل 1970 ] باکس و جنکینز، جی.ای پی و جی.ام، ( 13[ سریهای زمانی، پیشبینی و کنترل. [14] Shariati, N., Shahriari, H., Shafaei, R. “Parameter Estimation of Autoregressive Models Using Iteratively [15] Robust Filtered Fast-τ Method.” Communications in Statistics - Theory and Methods, 2012. DOI: 10.1080/03610926. 2012.72505. [16] Omar, M. “A
 Simple Robust Control Chart Based on MAD.” Journal of Mathematics and Statistics, Vol. 4,
 2008, pp. 102-107. [17] Khoo, B. C. “Robust Time Weighted Control Charts for the
 Process
 Variance” International Journal of Reliability, Quality and Safety Engineering, Vol.
 12, No. 5, 2005, pp. 439458 .
 [18] Stefatos, G., Hamza, A.B., “Fault Detetion Using Robust Multivariate
 Control Cahrt.” Expert
 System with Applications, Vol. 36, No. 3, 2009, pp. 5888-5894. [19] Shahriari, H., Ahmadi, O., Shokouhi, A. H., “A Robust R Control Chart Based on a Two-Step Estimator of the Process
 Dispersion.” Journal of Applied
 Statistic. Journal of Quality Engineering, Vol. 36, 2011, pp. 118-143. [20] Croux, C., Gelper, S., Mahieu, K., “Robust Control Charts for Time Series
 Data.”  Expert System  with Applications, Vol. 38, 2011, pp. 13810-13815 [21] Kalaker, P. S. (2004). Time series forecasting using holt-winters exponential smoothing. Kanwal Rekhi Scool of Information Technology. [22] Gepler, S. Fried, & Croux,    Smoothing. Journal of Forecasting, 29(3), 285-300C. (2010). Robust Forecasting with Exponential and HoitWinters