استفاده از روش شناسی رویه پاسخ و برنامه ریزی آرمانی بر پایه شبیه سازی در سلول رباتیک جهت بهینه یابی توالی عملیات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 باشگاه پژوهشگران جوان و نخبگان، واحد تهران جنوب، دانشگاه آزاد اسلامی

2 ایران-سنندج- دانشگاه کردستان- دانشکده مهندسی- گروه صنایع

3 گروه مهندسی صنایع،واحد تهران جنوب،دانشگاه آزاد اسلامی، تهران، ایران

چکیده

تمرکز اصلی این مقاله بر بهره گیری از رویکرد شبیه‌سازی کامپیوتری در مدل‌سازی در حضور عوامل مختلف عدم قطعیت و نیز استفاده از روش شناسی رویه پاسخ بر روی نتایج متنوع شبیه‌سازی در مساله تعیین توالی بهینه ورود قطعات به سلول تولیدی رباتیک سه ماشینه بر اساس سیاست حرکتی S_6 با در نظر گرفتن تولید قطعات مختلف در هر سیکل تولیدی است. تابع چگالی احتمال خرابی و زمان تعمیر ماشین ها دارای توزیع نمایی بوده و حداقل کردن زمان سیکل بر اساس سیاست حرکتی S_6 و حداکثر کردن خروجی در این سلول رباتیک همراه با کمینه‌سازی هزینه‌های عملیاتی به عنوان اهداف اصلی بهینه‌سازی مساله منظور شده است. نتایج شبیه‌سازی مثال‌های عددی متعدد حاکی از آن است که این رویکرد، در زمان رسیدن به جواب بهینه نسبت به رویکردهای پیشین مدل‌سازی بهبود قابل توجه دارد.

کلیدواژه‌ها


Hoogeveen, H. (2005) “Multicriteria Scheduling”, European Journal of Operational Research, 167: 592–623.
Dawande, M., Geismar, H., Sethi, S. P., Sriskandarajah, C. (2005). Sequencing and scheduling   in robotic cells: recent developments, Journal of Scheduling, Vol. 8, No. 5, 387-426.
Gultekin, H., Akturk, M.S. Karasan, O.E. (2007) "Scheduling in a Three-Machine Robotic Flexible Manufacturing Cell", Computers & operations research, 34(8): 2463-2477.
Gultekin, H., Akturk, M. S., Karasan, O.E. (2010) "Bi Criteria Robotic Operation Allocation in a Flexible Manufacturing Cell", Computers & operations research, 48(4): 779-789.
Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J. & Kubiak, W. (1992). Sequencing of parts and robot moves in a robotic cell, International Journal of Flexible Manufacturing Systems, Vol. 4, 331-358. 
Dawande, M., Sriskandarajah, C. & Sethi, S. P. (2002). On throughput maximization in constant travel-time robotic cells, Manufacturing and Service Operations Management, Vol 4, 296-312.
Geismar, H. N., & Pinedo, M. (2010). Robotic cells with stochastic processing times. IIE Transactions, Vol. 42, No. 12, 897-914.
Al-Salem, M., Haouari, M., Kharbeche, M., & Khallouli, W. (2016). A free-slack-based Genetic Algorithm for the robotic cell problem with controllable processing times. In Heuristics, Metaheuristics and Approximate Methods in Planning and Scheduling. 77-93. Springer International Publishing.
Feng, J., Che, A., Wang, N. (2014). Bi-objective cyclic scheduling in a robotic cell with processing time windows and non-Euclidean travel times, International Journal of Production Research, 52(9): 2505-2518.
Vaisi, B., Farughi, H., & Raissi, S. (2018). Two-Machine Robotic Cell Sequencing under Different Uncertainties. Int. J. Simul. Model, 17, 284-294.
Ghadiri Nejad, M., Shavarani, S. M., Vizvári, B., et al. (2018). Trade-off between process scheduling and production cost in cyclic flexible robotic cells. International Journal of Advanced Manufacturing Technology, 96.
Far, M. H., Haleh, H., & Saghaei, A. (2019). A fuzzy bi-objective flexible cell scheduling optimization model under green and energy-efficient strategy using Pareto-based algorithms: SATPSPGA, SANRGA, and NSGA-II. The International Journal of Advanced Manufacturing Technology, 105(9), 3853-3879.
Vaisi, B., Farughi, H., & Raissi, S. (2020). Schedule-Allocate and Robust Sequencing in Three-Machine Robotic Cell under Breakdowns. Mathematical Problems in Engineering, 2020.
Foumani, M., Razeghi, A., & Smith-Miles, K., (2020). Stochastic optimization of two-machine flow shop robotic cells with controllable inspection times: From theory toward practice. Robotics and Computer-Integrated Manufacturing, 61, 101822.
Gultekin, H., Tula, A., & Akturk, M. S. (2016). Automated robotic assembly line design with unavailability periods and tool changes. European Journal of Industrial Engineering, Vol. 10, No. 4, 499-526, doi:10.1504/EJIE.2016.078142.
Kise, H., Shioyama, T., & Ibaraki, T. (1991). Automated two-machine flow shop scheduling: a solvable case. IIE transactions, Vol. 23, No. 1, 10-16, doi:10.1080/07408179108963836
Logendran, R. and Sriskandarajah, C. (1996) “Sequencing of robot activities and parts in two- machine robotic cells”, International Journal of Production Research, Vol. 34, No. 12, 3447–3463.
Batur, G. D., Karasan, O. E., & Akturk, M. S. (2012). Multiple part-type scheduling in flexible robotic cells. International Journal of Production Economics, Vol. 135, No. 2, 726-740.
Hall, N.G., Kamoun, H. and Sriskandarajah, C. (1997) “Scheduling in robotic cells: classification, two and three machine cells”, Operations Research, Vol. 45, No. 3, 421–439, doi:10.1287/opre.45.3.421
Abdekhodaee, A. H., Wirth, A., & Gan, H. S. (2006). Scheduling two parallel machines with a single server: the general case. Computers & Operations Research, Vol. 33, No. 4, 994-1009.
Abdulkader, M. M. S., ElBeheiry, M. M., Afia, N. H., & El-Kharbotly, A. K. (2013). Scheduling and sequencing in four machines robotic cell: Application of genetic algorithm and enumeration techniques. Ain Shams Engineering Journal, Vol. 4, No. 3, 465-474.
Batur, G. D., & Erol, S. (2016). Using simulated annealing for flexible robotic cell scheduling. Gazi University Journal of Science, Vol. 29, No. 3, 573-582.
Savsar, M., Aldaihani M. (2008), Modeling of machine failures in a flexible manufacturing cell with two machines served by a robot, Reliability Engineering & System Safety, Vol. 93, No. 10, 1551-1562.
Hamasha, M. M., Alazzam, A., Hamasha, S., Aqlan, F., Almeanazel, O., Khasawneh, M. T. (2015). Multi machine flexi-ble manufacturing cell analysis using a markov chain-based approach, IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 5, No. 3, 439-446.
Akturk, M. S. & Gurel, A. S. (2007). Machining conditions-based preventive maintenance.  International journal of production research, Vol. 45, No. 8: 1725-1743.
Pidd, M. Computer Simulation in Management Science. 1986. Reprinted with corrections, Wiley.
Fu, M. C. (2002). Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14(3), 192-215.
Vinod, K. T., Prabagaran, S., & Joseph, O. A. (2019). Dynamic due date assignment method A simulation study in a job shop with sequence-dependent setups. Journal of Manufacturing Technology Management, 30(2), 421-437.
Linnéusson, G., Ng, A. H., & Aslam, T. (2020). A hybrid simulation-based optimization framework supporting strategic maintenance development to improve production performance. European Journal of Operational Research, 281(2), 402-414.
Kbah, Z., Erdil, N. O., & Aqlan, F. (2020). RISK ASSESSMENT IN OIL AND GAS INDUSTRY USING SIMULATION AND BOW-TIE ANALYSIS. International Journal of Industrial Engineering: Theory, Applications and Practice, 27(1).
Negahban, A., & Smith, J. S. (2014). Simulation for manufacturing system design and operation: literature review and analysis. Journal of Manufacturing Systems, 33(2), 241-261.
Mourtzis, D., Doukas, M., & Bernidaki, D. (2014). Simulation in manufacturing: review and challenges. Procedia CIRP, 25, 213-229.
Chan, F. T., & Chan, H. K. (2004). A comprehensive survey and future trend of simulation study on FMS scheduling. Journal of Intelligent Manufacturing, 15(1), 87-102.
Myer, R. H., & Montgomery, D. C. (2002). Response surface methodology: process and product optimization using designed experiment. John Wiley and Sons, New York.
Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.