پیش بینی بیزی برای نمونه سانسور شده از توزیع کوماراسوامی بر اساس مدل آزمون طول عمر سریع جزیی و بررسی کاربرد آن در مواد سرامیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک - دانشکده مهندسی - دانشگاه پیام نور

2 عضو هیئت علمی دانشگاه آزاد لاهیجان

چکیده

مدل آزمون طول عمر سریع، یکی از مدل‌های بهینه در کسب اطلاعات مربوط به قابلیت اطمینان محصولات، بر اساس تسریع زمان شکست در مدت زمان کوتاه است. در این تحقیق، فاصله پیش‌بینی بیزی برای مقادیر سانسور شده در مدل آزمون طول عمر سریع جزیی با فشار یکسان بر اساس توزیع کوماراسوامی، مطالعه گردیده است. به دلیل عدم وجود فرم بسته در تابع پیش‌بینی بیزی، از الگوریتم زنجیره مارکوف مونت کارلو برای محاسبه تابع پیش‌بینی تقریبی و ساختن فواصل پیش‌بینی استفاده شده است. شبیه‌سازی و یک مجموعه داده واقعی برای مقایسه فواصل پیش‌بینی‌ بیزی، آورده شده است. نتایج نشان می‌دهد که فواصل پیش‌بینی تحت تمامی حالات سانسور عملکرد خوبی دارند و مقادیر واقعی داده‌ها را در بر می‌گیرند. از نتایج به دست آمده می‌توان برای افزایش کیفیت و کاهش زمان و هزینه مربوط به آزمایش‌های کنترل کیفی محصولات استفاده کرد.

کلیدواژه‌ها


  • Nelson, W. B. (2009) Accelerated testing: statistical models, test plans, and data analysis (John Wiley & Sons).
  • Balakrishnan, N. (2009). A synthesis of exact inferential results for exponential step-stress models and associated optimal accelerated life-tests. Metrika, 69(2), 351-396.
  • Nassar, M. & Dey, S. (2018). Different estimation methods for exponentiated Rayleigh distribution under constant-stress accelerated life test. Quality and Reliability Engineering, 34(1), 1-13.
  • Alam, I. Intezar, M.A. & Ahmed, A. (2009). Costs of Maintenance Service Policy: a New Approach on Constant Stress Partially Accelerated Life Test for Generalized Inverted Exponential Distribution. Reliability: Theory & Applications, 2(62), 45-57.
  • Cheng, Y.-F. & Wang, F.-K. (2012). Estimating the Burr XII parameters in constant-stress partially accelerated life tests under multiple censored data. Communications in Statistics-Simulation and Computation, 41(9), 1711-1727.
  • Abdel-Hamid, A.H. (2009). Constant-partially accelerated life tests for Burr type-XII distribution with progressive type-II censoring. Computational Statistics and Data Analysis, 53, 2511-2523.
  • Abd EL-Baset, A. A., Soliman, A. A., & Yousef, M. M. (2016). Bayesian estimation of exponentiated Weibull distribution under partially acceleration life tests. Bulletin of the Malaysian Mathematical Sciences Society, 39(1), 227-244.
  • Lin, C.-T., Hsu, Y.-Y., Lee, S.-Y., & Balakrishnan, N. (2019). Inference on constant stress accelerated life tests for log-location-scale lifetime distributions with type-I hybrid censoring. Journal of Statistical Computation and Simulation, 89(4), 720-749.
  • Abd El-Raheem, A., Almetwally, E. M., Mohamed, M., & Hafez, E. (2021). Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 6(5), 5222-5255.
  • Balakrishnan, N., Rasouli, A., & Sanjari Farsipour, N. (2008). Exact likelihood inference based on an unified hybrid censored sample from the exponential distribution. Journal of Statistical Computation and Simulation, 78(5), 475-488.
  • Panahi, H. (2017). Estimation of the Burr type III distribution with application in unified hybrid censored sample of fracture toughness. Journal of applied Statistics, 44(14), 2575-2592.
  • Ateya, S. F. (2017). Estimation under inverse Weibull distribution based on Balakrishnan’s unified hybrid censored scheme. Communications in Statistics-Simulation and Computation, 46(5), 3645-3666.
  • Ghazal, M. & Shihab, Q. (2018). Exponentiated Pareto Distribution: A Bayes Study Utilizing Mcmc Technique Under Unified Hybrid Censoring Scheme. Journal of the Egyptian Mathematical Society, 26(2), 376-394.
  • Jeon, Y. E. & Kang, S.-B. (2021). Estimation of the Rayleigh Distribution under Unified Hybrid Censoring. Austrian Journal of Statistics, 50(1), 59-73.
  • Mitnik, P. A. & Baek, S. (2013). The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation. Statistical Papers, 54(1), 177-192.
  • Dey, S., Mazucheli, J., & Nadarajah, S. (2018). Kumaraswamy distribution: different methods of estimation. Computational and Applied Mathematics, 37(2), 2094-2111.
  • Kızılaslan, F. & Nadar, M. (2018). Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution. Statistical Papers, 59(1), 307-340.
  • Wang, L. (2018). Inference of progressively censored competing risks data from Kumaraswamy distributions. Journal of Computational and Applied Mathematics, 343, 719-736.
  • Panahi, H. (2020). Interval estimation of Kumaraswamy parameters based on progressively type II censored sample and record values. Miskolc Mathematical Notes, 21(1), 319-334.
  • Mahto, A. K., Lodhi, C., Tripathi, Y. M., & Wang, L. (2021). Inference for partially observed competing risks model for Kumaraswamy distribution under generalized progressive hybrid censoring. Journal of Applied Statistics, 1-29.
  • Ghazal, M. & Hasaballah, H. (2018). Bayesian prediction based on unified hybrid censored data from the exponentiated Rayleigh distribution. J Stat Appl Probab Lett, 5, 103-118.
  • Jaheen, Z. F. (2003). Prediction of progressive censored data from the Gompertz model. Communications in Statistics-Simulation and Computation, 32(3), 663-676.
  • Hyun, N., Cheung, L. C., Pan, Q., Schiffman, M., & Katki, H. A. (2017). Flexible risk prediction models for left or interval-censored data from electronic health records. The annals of applied statistics, 11(2), 1063.
  • Panahi, H. & Asadi, S. (2019). Point and interval evaluation of nanoparticles censored sample in the spray process. Journal of Particle Science & Technology, 5(2), 91-99.
  • Basak, I. & Balakrishnan, N. (2018). A Note on the Prediction of Censored Exponential Lifetimes in a Simple Step-stress Model with Type-II Censoring. Calcutta Statistical Association Bulletin, 70(1), 57-73.
  • Ahmad, A. E.-B. A., Fawzy, M. A., & Ouda, H. (2019). Bayesian prediction of future observations from weighted exponential distribution constant-stress model based on Type-II hybrid censored data. Communications in Statistics-Theory and Methods, 1-15.
  • Lu, C., Danzer, R., & Fischer, F. D. (2002). Fracture statistics of brittle materials: Weibull or normal distribution. Physical Review E, 65(6), 067102.