ارزیابی و کنترل عوامل مؤثر بر بهبود قابلیت اطمینان تجهیزات با رویکرد شبیه سازی سیستم های پویا (مورد مطالعه: کارخانه سیمان قاین)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی مدیریت، دانشکده علوم اداری و اقتصاد دانشگاه فردوسی مشهد

2 دانشکده علوم اداری و اقتصاد، گروه مدیریتفدانشگاه فردوسی مشهد

3 دانشگاه زاهدان، مدیریت دولتی

چکیده

عوامل و متغیرهای بسیار زیادی بر بهبود قابلیت اطمینان تجهیزات سازمان‌ها تأثیر دارند که غفلت از آن‌ها ممکن است ضررات جبران ناپذیری بر سازمان‌ها وارد کند. از آنجا که ارتباط این عوامل با هم دارای پویایی‌ها و بازخوردهای فراوانی است، پویایی شناسی سیستم ابزاری مناسب برای تجزیه و تحلیل قابلیت اطمینان تجهیزات است. هدف از این مطالعه، ایجاد و توسعه‌ی روشی جدید برای ارزیابی و بهبود قابلیت اطمینان تجهیزات یکی از صنایع مهم دنیا با استفاده از رویکرد پویایی‌شناسی سیستمی در یک افق 5 ساله است. در این راستا ابتدا متغیرهای کلیدی مؤثر بر بهبود قابلیت اطمینان، شناسایی و روابط آن‌ها در قالب نمودار انباشت تکمیل و شبیه‌سازی شده است. نتایج شبیه‌سازی بیانگر آن است که با اعمال سیاست‌های بهبود آموزش کارکنان، تخصیص منابع به نگهداری پیشگیرانه و.... قابلیت اطمینان تجهیزات به طور قابل توجهی افزایش و مدیران باید توجه بیشتری به این متغیرها کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluate and control the factors affecting the equipment reliability  with the approach Dynamic systems simulation, Case study: Ghaen  Cement Factory)

نویسندگان [English]

  • Azam Modares 1
  • Vahide Bafandegan emroozi 2
  • Zahra Mohemmi 3
1 PhD Candidate- Operations Research, Department of Management, Faculty of Economics and Adminstrative, Ferdowsi University of Mashhad, Iran.
2 PhD Candidate- Operations Research, Department of Management, Faculty of Economics and Adminstrative, Ferdowsi University of Mashhad. Iran.
3 PhD Candidate- Public Administratio, Department of Management, Faculty of Economics and Adminstrative, University of Sistan and Baluchestan. Iran.
چکیده [English]

There are many factors and variables that affect the reliability of organizations equipment that neglecting them may cause irreparable damage to organizations. Despite the importance of high reliability of equipment on the profitability of organizations, so far no research has considered the factors affecting it simultaneously and together. Because the relationship between these factors has a lot of dynamics and feedback, system dynamics is a good tool for analyzing the equipment reliability. The purpose of this study is to create and develop a new way to evaluate and improve the reliability of equipment of one of the most important industries in the world using the system dynamics approach in a 5-year horizon. In this regard, first, the key variables affecting the improvement of reliability, identification and their relationships in the form of accumulation and flow diagrams are completed and simulated in vensim software. Then, after creating a flow-accumulation diagram, suitable scenarios for improving performance are discussed. The validity of the model was also assessed by three tests of reference behavior reconstruction, limit behavior and sensitivity. Simulation results indicates that by implementing policies to improve staff training, allocation of resources to preventive maintenance, etc., the reliability of equipment is significantly increased and this will increase the sales and profits of the organization and managers should pay more attention to these variables. 

کلیدواژه‌ها [English]

  • system dynamics
  • Reliability
  • Repair and Maintenance. 
  •  

    • Compare, M., Baraldi, P, I., Bani, E., Zio, D. McDonnell., D. (2020). Industrial Equipment Reliability Estimation: a Bayesian Weibull Regression Model with Covariate Selection, Reliability Engineering & System Safety, V. 200.
    • Hadipour, H., Amiri, M., Sharifi., M. (2018). Redundancy allocation in series-parallel systems under warm standby and active components in repairable subsystems, Reliab Eng Syst Saf, 192 1-18.
    • Gong, M., Liu, H., peng, R. (2020). Redundancy allocation of mixed warm and cold standby components in repairable K-out-of N systems, Proceedings of the Institution of Mechanical Engineers, journal of risk and Reliability, 232 38-51.
    • Ardakan, M., Sima, M., Hamadani, A., Coit, DW. (2016). A novel strategy for redundant components in reliability-redundancy allocation problems. IIE Transactions, 48(11), 1043-57.
    • Nakagawa, T. (2005). Maintenance theory of Verlag  London; Springer, 1108-1113.
    • , L. (2017). Optimization of Component Allocation/Distribution and Sequencing in Warm Standby Series-Parallel Systems, IEEE Transactions on Reliability , 66(4) , 1-23.
    • Kumar U, Klefsjo P, H, (2003). Handbook of Reliability United States of America; Springer.
    • Wang, Zh., Huang, H. Zh., Li, Y., Pang, Y., Xiao, N, (2012). An approach to system reliability analysis with fuzzy random variables. Mechanism and Machine Theory, 52, 35–46.
    • , S, Hosienie., G, Khalokakaei., F. (2013). The Reliability and Maintainability Analysis of Pneumatic System of Rotary Machines, The Institution of Engineers, 94(2), pp.105-111.
    • Wang, X., Su, C, (2016). A two-dimensional preventive maintenance strategy for items sold with warranty.31.International Journal of Production Research, 54 (19), 5901–5915.
    • Wang Y, Deng D, (2014) A corrective maintenance scheme for engineering equipment, Engineering Failure Analysis, 36, 269-283.
    • Vlachos, D., Georgiadis, P., Iakovou, E (2007). A system dynamics model for dynamic capacity planning of remanufacturing in closed-loop supply chains; Computers & Operations Research 34, 367–394.
    • Ardakan M, Hamadani A. Reliability optimization of series–parallel systems with mixed redundancy strategy in subsystems. Reliability Engineering & System Safety, 130:13 (2014), 2-9.
    • Ardakan, M., Rezvan, M. T. (2017). Multi objective optimization of reliability-redundancy allocation problem with cold-standby strategy using NSGA-II. Reliability Engineering & System Safety, 1-36.
    • , H, Hamadani., A. (2017). A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy, Reliability Engineering and System Safety, 164, 66-73.
    • , J. D. (2000). Business Dynamics System Thinking and Modeling for a Complex World. McGraw – Hill publication.
    • , B, Chen., Jx, Liang., TP. (2006). Applying Data Mining to Learn System Dynamics in a Biological Model. Expert Systems with Applications 30, 50 -58.
    • , S. (1996). A dynamic model for civil engineering design management, Information Representation and Delivery in Civil and Structureal Engineering Design, Vol 24. pp:47-56.
    • Zoha, W.,& Rena., H. (2011). A system dynamics model for evaluating the alternative of type in construction and demolition waste recycling center. Resources, Conservation and Recycling, 55, 93-944.
    • , M, Kaminskiy., M.P, Krivstsov,V. (2016). Reliability engineering and risk analysis: a practical guide. CRC press 522.
    • امیری، م؛ عظیمی، پ؛ زندیه، م؛ (1395). بهینه‌سازی قابلیت اطمینان تجهیزات و تسحیلات نظامی با رویکرد ترکیبی شبیه سازی و الگوریتم های فرا ابتکاری، فصلنامه مدیریت نظامی، دوره 5، 125-164.
    • ایرج­پور، ع. ل، سلیمی، م. ح. (1385). ارائه مدلی به­منظور تعیین سیاست نگهداری اثربخش با رویکرد پویایی سیستم، مجله دانش مدیریت، شماره 74. 123-157.
    • اسماعیلیان، غ. ل؛ لورک‌زاده، ف؛ زارعیان، ر. (1394). ارزیابی و مقایسه اثربخشی پیاده‌سازی نت اصلاحی و نت پیشگیرانه با پویایی‌شناسی سیستم‌ها (مطالعه موردی: شرکت سیمگان)، مدیریت صنعتی، دوره 7، 189-214.
    • Jamshidi, A., Abbasgholizadeh Rahimi, S., Ait-kadi, D., Ruiz A. (2015). An Intelligent Healthcare Management System: A New Approach in Work-order Prioritization for Medical Equipment Maintenance Requests. Journal of Medical Systems. 36(2), pp557-567.
    • Bivona, E., & Montemaggiore, G. B. (2005, July). Evaluating fleet and maintenance management strategies through system dynamics model in a city bus company. In International System Dynamics Conference, Boston, MA. pp. 17-21. Olive, R. (2003). Model calibration as a testing strategy for system dynamics models. European journal of Operational Reasearch. 151, Pages: 552-568.
    • Deenen, R. E. M., Van Daalen, C. E., & Koene, E. G. C. (2008, July). Maintenance performance improvement with system dynamics: a corrective maintenance showcase. In Proceedings of the 26th International Conference of the System Dynamics Society, Athens, Greece, 20-24.
    • Bohm, T., Beck, K., Knaak, A., & Jager, B. (2008). Efficient maintenance strategy through System Dynamics. In Eleventh International Conference on Computer System Design and Operation in the Railway and Other Transit Systems (COMPRAIL8).
    • Chumai, R. (2009, July). System Dynamic Modeling of Plant Maintenance Strategy in Thailand. In Proceedings of the 27th International Conference of the System Dynamics Society, Albuquerque (pp. 26-30).
    • Hamdi, N, Oweeis R, Zraiq H, Summour D, (2012). An intelligent healthcare management system: A New Approach in work-order prioritization for medical Equipment maintenance request. Journal of Medical Systems, 36(2), pp 557-567.
    • Basirat, P., Fazlollahtabar, H. & Mahdavi, I. (2013). System dynamics meta-modelling for reliability considerations in maintenance, Process Management and Benchmarking, 3(2): 136–153.
    • Rezaie, F ,Fakoor  Saghih, A, Motahari,N, (2020). A novel hybrid approach based on CREAM and fuzzy ANP to evaluate human resource reliability in urban railway, journal of Transportation Safety & Security, DOI: 1080/19439962.2020.1738611.
    • Ventana,(2003), User interface authoring tool for Vensim, Systems Inc, issue 3.
    • Anand S, Vrat P, Dahiya R.P. (2006), Application of a System Dynamics Approach for Assessment and Mitigation of CO2 Emissions from the CementIndustry. Journal of Environmental Management, 79, 383 -398.
    • Streman, Business Dynamics, (2001), System Thinking and Modeling for a Complex World, McGraw-Hill 4,86-90,599-600,241-249,853-855.