تاثیر خرابی علت مشترک در پیش بینی قابلیت اطمینان صنعت ریلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد دانشکده مدیریت و حسابداری دانشگاه شهید بهشتی

2 دانشجوی رشته مدیریت صنعتی دانشگاه شهید بهشتی

3 استاد دانشکده مدیریت و حسابداری

4 استادیار دانشکده مدیریت و حسابداری دانشگاه شهید بهشتی

چکیده

وجود وابستگی در سیستم ها یکی از مشکلات پیش روی قابلیت اطمینان است. وابستگی احتمال خرابی را افزایش می دهد و می تواند بر عملکرد یک سیستم تاثیر بگذارد. بدون در نظر گرفتن وابستگی، قابلیت اطمینان به صورت خوش بینانه برآورد می گردد و سیستم زودتر از پیش بینی های مقرر با شکست مواجه می شود. در صنعت ریلی به دلیل پویایی و پیچیدگی ها ی زیاد، زیرسیستم ها سطح بالایی از وابستگی را نشان می دهند. شناسایی وابستگی ها و خرابی های وابسته بر اساس بلوک دیاگرام قابلیت اطمینان و ساختار سیستم ریلی می تواند بر پیش بینی دقیق تر قابلیت اطمینان اثر بگذارد و از تبعات گاه جبران ناپذیر جلوگیری نماید. این مقاله یک مدل جدید ریاضی برای پیش بینی قابلیت اطمینان در صنعت ریلی با در نظر گرفتن خرابی علت مشترک ارائه نموده است. نتایج، افزایش دقت در پیش بینی قابلیت اطمینان را نشان داده اند.

کلیدواژه‌ها


عنوان مقاله [English]

Impact of Common Cause Failure on Reliability Prediction of Rail industry

نویسندگان [English]

  • akbar alemtabriz 1
  • farzaneh nazarizadeh 2
  • mostafa zandieh 3
  • abbas raad 4
1 Professor, Faculty of Management and Accounting, Shahid Beheshti University
2 Student of Industrial Management, Shahid Beheshti University
3 Professor, Faculty of Management and Accounting. shahid beheshti university
4 Assistant Professor, Faculty of Management and Accounting, Shahid Beheshti University
چکیده [English]

Dependency in systems is one of the problems that reliability faces. Dependence increases the probability of failure and can affect the performance of a system; Therefore, it is very important to study and understand the consequences when designing, operating and maintaining the system. Regardless of the dependency, reliability is optimistically estimated and the system fails sooner than expected. In the rail industry, subsystems show a high level of dependence due to their high dynamics and complexity. Failure of any of the subsystems can affect the performance of the entire network and sometimes have irreparable consequences. Identifying dependencies and dependent failures based on the block diagram of reliability and the structure of the rail system can affect the more accurate prediction of reliability and reduce the subsequent consequences. This paper presents a new mathematical model for predicting reliability in the rail industry by considering common cause failure. Various methods have been introduced to estimate the common cause failure coefficient. The results show an increase in accuracy in predicting reliability.

کلیدواژه‌ها [English]

  • Reliability
  • Dependent failure
  • Common cause failure
  • Failure rate
  • Railway industry
Genser, R., & Grassl, A. (1974). State of reliability effort of the European railways. IEEE Transactions on reliability, 23(3), 156-161.
Billinton, R., & Allan, R. N. (1992). Reliability evaluation of engineering systems (Vol. 792). New York: Plenum press.
Mosleh, A., (1991). Dependent failure analysis. Reliability Engineering and System Safety. pp. 243–250
Hoyland, A., & Rausand, M. (2009). System reliability theory: models and statistical methods. John Wiley & Sons.
Sun, Y., Ma, L., Mathew, J., & Zhang, S. (2006). An analytical model for interactive failures. Reliability Engineering & System Safety, 91(5), 495-504.
Rausand, M., & Lundteigen, M. A. (2014). Reliability of safety-critical systems: theory and applications: John Wiley & Sons.
Zhou, T., Droguett, E. L., & Modarres, M. (2020). A common cause failure model for components under age-related degradation. Reliability Engineering & System Safety, 195, 106699.
Humphreyes, P., & Johnston, B. D. (1987). Dependent Failure Procedure Guide SRD-R-418. United Kingdom Atomic Energy Authority, Safety and Reliability Directorate.
Greig, G. L. (1993). Second moment reliability analysis of redundant systems with dependent failures. Reliability Engineering & System Safety, 41(1), 57-70.
 Fitzmaurice, R.  and Fitzpatrick, D. (2010). Cascading Failure in a Complex System Model for Power Systems: Operating and Planning Policy, Doctor of Philosophy thesis, University College Dublin.
NUREG-75/014., Reactor safety: An assessment of accident risk in us commercial nuclear power plants, technical report. U.S. Nuclear Regulatory Commission, WASH-1400, Washington DC, (1975).
Pourali, M. (2013). Incorporating common cause failures in mission-critical facilities reliability analysis. IEEE Transactions on Industry Applications, 50(4), 2883-2890.
Pozsgai, P., Neher, W., & Bertsche, B. (2002, June). Models to consider dependence in reliability calculation for systems consisting of mechanical components. In 3rd International Conference on Mathematical Methods in Reliability, Trondheim, Norwegen (pp. 539-542).
Fukuoka, H. (2002). Reliability evaluation method for the railway system: A model for complicated dependency. Quarterly Report of RTRI, 43(4), 192-196.
Pistolas. C, V. (2016). Decision making for railway operations using RAM analysis. Risk, Reliability and Safety: Innovating Theory and Practice, 2712-2718.
Cimatti, A., et al., (2012). Formal Verification and Validation of ERTMS Industrial Railway Train Spacing System, in Computer Aided Verification:24th International Conference, CAV 2012. Berkeley, CA, USA
EN50126. (1999). Railway Applications: The specification and demonstration of Reliability, Availability, Maintainability and Safety. CENELEC, International Electrotechnical Commission, IEC
Diab, E. Badami, M. El-Geneidy. A, 2015, Bus Transit Service Reliability and Improvement Strategies: Integrating the Perspectives of Passengers and Transit Agencies In North America, International Journal of Transport Reviews, Pages 292-328
Cheng. Y, Tsung LU. C, Lin Lu. C. (2017). comprehensive approach to allocate reliability and cost in passenger rail system design, Transportation Research Record: Journal of the Transportation Research Board, no. 2608, pp. 86-95
Čepin M. (2011) Reliability Block Diagram. In: Assessment of Power System Reliability. Springer, London. https://doi.org/10.1007/978-0-85729-688-7_9
Gilchrist, W. (1993). Modelling failure modes and effects analysis. International Journal of Quality & Reliability Management. 10(5):16–23.
Dinmohammadi, F., Alkali, B., Shafiee, M., Bérenguer, C., & Labib, A. (2016). Risk evaluation of railway rolling stock failures using FMECA technique: a case study of passenger door system. Urban Rail Transit, 2, 128-145.
Bemment, S. D., Goodall, R. M., Dixon, R., & Ward, C. P. (2017). Improving the reliability and availability of railway track switching by analysing historical failure data and introducing functionally redundant subsystems, Journal of Rail and Rapid Transit, 2017, 0(0) pp. 1–18
Du, X., Yang, Z., Chen, C., Li, X., & Pecht, M. G. (2018). Reliability analysis of repairable systems based on a two-segment bathtub-shaped failure intensity function. IEEE Access, 6, 52374-52384.
Conradie, P. D. F., Fourie, C. J., Vlok, P. J., & Treurnicht, N. F. (2015). Quantifying system reliability in rail transportation in an ageing fleet environment. South African Journal of Industrial Engineering, 26(2), 128-142.
Patra, A. P., Dersin, P. and Kumar, U. (2009). Cost effective maintenance policy: a case study. Accepted for publication in the International Journal of Performability Engineering
Rong Zhang. R, Lu Li, Jian. W. (2019). Reliability analysis on railway transport chain, International Journal of Transportation Science and Technology 8, 192–201, https://doi.org/10.1016/j.ijtst.2018.11.004
Al-Douri, Y. K., Tretten, P. and Karim. R. (2016). Improvement of railway performance: a study of Swedish railway infrastructure, J. Mod. Transport. 24(1):22–37
Navas, M. A., Sancho, C., & Carpio, J. (2017). Reliability analysis in railway repairable systems. International Journal of Quality & Reliability Management.
Chen. H., (2003). New models for measuring the reliability performance of train service, European Safety and Reliability Conference, 15-18 June 2003, Maastricht, The Netherlands, pp. 397-402
Hui. S. (2015). Maintenance Modelling, Simulation and Performance Assessment for Railway Asset Management. PhD Thesis, University of Technology of Troyes (UTT).
Fleming, K. N. (1974). Reliability model for common mode failures in redundant safety systems (No. GA-A-13284). General Atomics, San Diego, CA (United States).
Borcsok, J., Schaefer, S., & Ugljesa, E. (2007, April). Estimation and evaluation of common cause failures. In Second International Conference on Systems (ICONS'07) (pp. 41-41). IEEE.
Sun, W. (2013). Determination of beta-factors for safety instrumented systems (Master's thesis, Institutt for produksjons-og kvalitetsteknikk).
Xie, L., Lundteigen, M. and Liu,Y.(2018). Common cause failures and cascading failures in technical systems: Similarities, differences and barriers. European safety and reliability Conference. Trondheim, Norway. DOI: 10.1201/9781351174664-302
Singh, P., & Singh, L. K. (2021). "Modeling and Measuring Common Cause Failures in Measurement of Reliability of Nuclear Power Plant Systems," in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-8, 2021, Art no. 3001608, doi: 10.1109/TIM.2021.3105265.