ارائه مدل ریاضی چند هدفه زنجیره تامین حلقه بسته سبز در شرایط فروش محصولات برگشتی با استفاده از رویکرد روش محدودیت اپسیلون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، دانشکده فنی و مهندسی شرق گیلان، دانشگاه گیلان، رودسر، گیلان، ایران

2 گروه مهندسی صنایع، دانشکده فنی، دانشگاه آزاد اسلامی واحد لاهیجان، لاهیجان، گیلان، ایران

چکیده

امروزه تغییرات سریع اقتصادی و فشار بازار رقابتی، سازمان‌ها را به سمت تمرکز بر اثربخش‌ترکردن فعالیت‌های زنجیره‌ تأمین سوق می‌دهد.طراحی مناسب و کارایی شبکه‌های لجستیکی علاوه بر ایجاد مزیت رقابتی پایدار،باعث افزایش رضایت مشتریان می‌شود.در این پژوهش ﻃﺮاﺣﯽ ﯾﮏ ﺷﺒﮑﻪ ﻟﺠﺴﺘﯿﮏ حلقه بسته ﺑﻪﻣﻨﻈﻮر ﮐﺎهش آﻻﯾﻨﺪﮔﯽ‎‌های ﻣﺤﯿﻂ زﯾﺴتی،با استفاده از روش استوار‌سازی برتسیماس و سیم ارائه شد.مدل ریاضی ارائه شده در این پژوهش با درنظرگرفتن اهداف کمینه‌سازی هزینه‌های مربوط به حمل و نقل،زمان دریافت مواد اولیه از تأمین‌کننده وزمان عودت محصول از مشتری به مرکز جداساز ارائه شد.استراتژیک‌بودن زنجیره تامین حلقه بسته و فضای حل تقریبی سبب تحمیل هزینه‌های زیادی به سیستم می‌شود.در این پژوهش جهت افزایش دقت در جواب‌های مدل از الگوریتم حل دقیق محدودیت اپسیلون استفاده شده است.نتایج نشان داد که توزیع محصولات در شرکت مورد مطالعه به میزان 20 درصد بهبود در هزینه‌ها و زمان‌بندی توزیع و همچنین سبب افزایش رضایت مشتریان از دریافت کالاهای تولیدی شده‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Developing a multi-objective mathematical model of green closed-loop supply chain In terms of selling returned products using the Epsilon-constraint method approach

نویسندگان [English]

  • Ehsan Fallahiarezoudar 1
  • Fatemeh Alami 2
  • Mohaddeseh Ahmadipourroudposht 2
1 Department of Industrial Engineering, Faculty of Technology and Engineering, East of Guilan, University of Guilan, 44918 Roudsar, Guilan, Iran
2 Department of Industrial Engineering, Faculty of Technology, Islamic Azad University (Lahijan Branch), Lahijan, Guilan, Iran
چکیده [English]

Currently, rapid economic change and increasing competitive market pressure are pushing organizations to focus on making supply chain operations more efficient and effective. Proper design and efficiency of logistics networks as part of supply chain planning, in addition to creating a sustainable competitive advantage, increases customer satisfaction and provides the opportunity to meet their needs, which is why the decisions related to the design of these networks are of great importance. Enjoy. Therefore, in this study, the design of a closed-loop logistics network to reduce pollution and environmental pollution using the Bertsimas and wire stabilization method was presented. The mathematical model to be presented in this research was presented by considering the objectives of minimizing transportation costs, minimizing the time of receiving raw materials from the supplier and minimizing the time of product return from the customer to the separation center. Due to the strategic nature of the closed-loop supply chain, which with the approximate solution space causes a lot of costs to be delivered to the system to increase the accuracy of the answers of the mathematical model and application of this goal in this study It is used to reduce the computational time of the model, the results obtained with high accuracy. On the other hand, because the operational logic of solving Lagrange release is based on a single-objective model, first multi-objective mathematical model with Augmented Epsilon-Constraint The target was converted and then the Lagrange release algorithm was implemented on it.

کلیدواژه‌ها [English]

  • Closed-loop Supply Chain
  • Uncertainty
  • Robust Optimization
  • Epsilon Constraint
1]     علی محمدی، م.، 1398، بهینه‌سازی مساله چندهدفه در شبکه زنجیره تامین دو سطحی با در نظر گرفتن کالای معیوب (مطالعه موردی شرکت صنایع فولاد کرمان)، چهارمین کنفرانس ملی در مدیریت، حسابداری و اقتصاد با تاکید بر بازاریابی منطقه‌ای و جهانی، تهران،https://civilica.com/doc/915366
[2]    Ahmadi, A., Mousazadeh, M., Torabi, S. A., & Pishvaee, M. S. (2018). Or applications in pharmaceutical supply chain management. In Operations research applications in health care management (pp. 461-491). Springer.
[3]    Gholipour, S., Ashoftehfard, A., & Mina, H. (2020). Green supply chain network design considering inventory-location-routing problem: a fuzzy solution approach. International Journal of Logistics Systems and Management35(4), 436-452.
[4]    Marandi, F., & Fatemi Ghomi, S. M. T. (2019). Integrated multi-factory production and distribution scheduling applying vehicle routing approach. International Journal of Production Research57(3), 722-748.
[5]    رجبی پورمیبدی، ع.، مفتح زاده، ا.، کیانی، م.، و زمزم، ف. 1400. طراحی الگوی عوامل موثر بر استقرار مدیریت زنجیره تامین سبز بر اساس رویکرد فراترکیب و تحلیل و توسعه گزینه های استراتژیک (سودا). مدیریت بهره وری (فراسوی مدیریت), 15(1 (پیاپی 56) ), 265-293. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=569072
[6]    Mousavi, M., Jamali, G., Ghorbanpour, A. (2021). A Green-resilient Supply Chain Network Optimization Model in Cement Industries. Industrial Management Journal, 13(2), 222-245. doi: 10.22059/imj.2021.323226.1007844
[7]    Samuel, C. N., Venkatadri, U., Diallo, C., & Khatab, A. (2020). Robust closed-loop supply chain design with presorting, return quality and carbon emission considerations. Journal of Cleaner Production247, 119086.
[8]    Peng, H., Shen, N., Liao, H., Xue, H., & Wang, Q. (2020). Uncertainty factors, methods, and solutions of closed-loop supply chain—A review for current situation and future prospects. Journal of Cleaner Production254, 120032.
[9]    Carbonara, N., & Pellegrino, R. (2017). How do supply chain risk management flexibility-driven strategies perform in mitigating supply disruption risks?. International Journal of Integrated Supply Management11(4), 354-379.
[10]  Beier, J. (2017). Manufacturing Systems and Variable Renewable Electricity Supply. In Simulation Approach Towards Energy Flexible Manufacturing Systems (pp. 11-49). Springer, Cham.
[11]  غلامیان، ن.، مهدوی، ا.،  توکلی مقدم، ر.، و مهدوی امیری، ن.،1396،برنامه ریزی تولید ادغامی چند هدفه زنجیره تامین سبز تحت عدم قطعیت تقاضا از طریق بهینه سازی فازی،کنفرانس بین المللی زنجیره تامین سبز، لاهیجان، https://civilica.com/doc/637285
 [12] Zhao, G., Liu, S., & Lopez, C. (2017, September). A literature review on risk sources and resilience factors in agri-food supply chains. In Working Conference on Virtual Enterprises (pp. 739-752). Springer, Cham.
[13]  Christopher, M., Harrison, A., & Hoek, R. V. (2016). Creating the agile supply chain: issues and challenges. Developments in logistics and supply chain management, 61-68.
 [14] Genovese, A., Acquaye, A. A., Figueroa, A., & Koh, S. L. (2017). Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications. Omega66, 344-357.
 [15] شفیعی، م.، رضایی، ذ.، ابراهیمی، ع.، 1388، "مدیریت راهبردی زنجیره تامین"، تهران، انتشارات ترمه.
 [16] Hofmann, E., & Kotzab, H. (2010). A supply chain‐oriented approach of working capital management. Journal of business Logistics31(2), 305-330.
[17]  Fleischmann, M., Beullens, P., BLOEMHOF‐RUWAARD, J. M., & Van Wassenhove, L. N. (2001). The impact of product recovery on logistics network design. Production and operations management10(2), 156-173.
[18]  Lee, D. H., & Dong, M. (2008). A heuristic approach to logistics network design for end-of-lease computer products recovery. Transportation Research Part E: Logistics and Transportation Review44(3), 455-474.
[19]  Salema, M. I. G., Barbosa-Povoa, A. P., & Novais, A. Q. (2006). An integrated model for the design and planning of supply chains with product return. In Computer Aided Chemical Engineering (Vol. 21, pp. 2129-2134). Elsevier.
[20]  Salema, M. I. G., Barbosa-Póvoa, A. P., Novaisc, A. Q., & Luiziod, M. (2007). Design of recovery supply chains: a Portuguese recovery network for WEEE.
[21]  Lu, Z., & Bostel, N. (2007). A facility location model for logistics systems including reverse flows: The case of remanufacturing activities. Computers & operations research34(2), 299-323.
[22]  Listeş, O. (2007). A generic stochastic model for supply-and-return network design. Computers & Operations Research34(2), 417-442.
[23]  Ko, H. J., & Evans, G. W. (2007). A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs. Computers & Operations Research34(2), 346-366.
[24]  Min, H. (2015). Genetic algorithm for supply chain modelling: basic concepts and applications. International Journal of Services and Operations Management22(2), 143-164.
[25]  Lee, D., Dong,M. (2008). A heuristic approach to logistics network design for end-of-lease computer products recovery. Transportation Research Part E, 44, 455-474.
 [26] Pishvaee, M. S., & Khalaf, M. F. (2016). Novel robust fuzzy mathematical programming methods. Applied Mathematical Modelling40(1), 407-418.
[27]  El-Sayed, M., Afia, N., & El-Kharbotly, A. (2010). A stochastic model for forward–reverse logistics network design under risk. Computers & Industrial Engineering, 58(3), 423-431.
 [28] Galbraith, J. K. (2010). 7 Uncertainty and the modern corporation. The Economics of John Kenneth Galbraith: Introduction, Persuasion, and Rehabilitation, 174.
 [29] Hu, Q., Zhang, L., Chen, D., Pedrycz, W., & Yu, D. (2010). Gaussian kernel based fuzzy rough sets: model, uncertainty measures and applications. International Journal of Approximate Reasoning51(4), 453-471.
 [30] Alfonso-Lizarazo, E. H., Montoya-Torres, J. R., & Gutiérrez-Franco, E. (2013). Modeling reverse logistics process in the agro-industrial sector: The case of the palm oil supply chain. Applied Mathematical Modelling37(23), 9652-9664.
[31]  Amin, S. H., & Zhang, G. (2013). A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modelling37(6), 4165-4176.
[32]  Talaei, M., Moghaddam, B. F., Pishvaee, M. S., Bozorgi-Amiri, A., & Gholamnejad, S. (2016). A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry. Journal of Cleaner Production, 113, 662-673.
 [33] Badri, H., Ghomi, S. F., & Hejazi, T. H. (2017). A two-stage stochastic programming approach for value-based closed-loop supply chain network design. Transportation Research Part E: Logistics and Transportation Review105, 1-17.
[34]  Linfati, R., Gatica, G., & Escobar, J. W. (2021). A Mathematical Model for Scheduling and Assignment of Customers in Hospital Waste Collection Routes. Applied Sciences11(22), 10557.
[35]  Belgin, O., Karaoglan, I., & Altiparmak, F. (2018). Two-echelon vehicle routing problem with simultaneous pickup and delivery: Mathematical model and heuristic approach. Computers & Industrial Engineering115, 1-16.
[36]  Edalatpour, M. A., & Mirzapour Al-e-Hashem, S. M. J. (2019). Simultaneous pricing and inventory decisions for substitute and complementary items with nonlinear holding cost. Production Engineering13(3), 305-315.
[37]  Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 89, 182-214.
[38]  Asim, Z., Jalil, S. A., & Javaid, S. (2019). An uncertain model for integrated production-transportation closed-loop supply chain network with cost reliability. Sustainable Production and Consumption17, 298-310.