[1] Wang, G.G., & Shan, S. (2006). Review of Metamodeling Techniques in Support of Engineering Design Optimization. Journal of Mechanical Design, 129 (4), 370-380. [2] Ahmed, M.Y.M., & Qin, N. (2009). SurrogateBased Aerodynamic Design Optimization: Use of Surrogates in Aerodynamic Design Optimization. 13th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT13-AE-14. [3] Gordon Leishman, J. (2006). Principles of Helicopter Aerodynamics. Second Edition, Cambridge University Press. [4] Walsh, J.L., Bingham, G.J., & Riley, M.F. (1985). Optimization Methods Applied to the Aerodynamic Design of Helicopter Rotor Blades. National Aeronautics and Space Administration (NASA), Langley Research Center, NASA Technical Memorandum 89155, Virginia. [5] Vu, N.A., Lee, J.W., & Shu, J.I. (2013). Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance. Chinese Journal of Aeronautics, 26 (1), 1-8. [6] Vu, N.A., & Lee, J.W. (2015). Aerodynamic design optimization of helicopter rotor blades including airfoil shape for forward flight. Aerospace Science and Technology, 42 (1), 106-117. [7] Leusink, D., Alfano, D. Cinnella, P., & Robinet, J-C. (2013). Aerodynamic rotor blade optimization at Eurocopter - a new way of industrial rotor blade design. 51st AIAA Aerospace Sciences Meeting, AIAA 2013-0779. [8] Prouty R.W. (2001). Helicopter Performance, Stability, and Control. Second Edition, Krieger Publishing Company. [9] Reß, R., Grawunder, M., & Breitsamter, C.H. (2015). AERODYNAMIC ANALYSIS OF A HELICOPTER FUSELAGE WITH ROTATING ROTOR HEAD. Progress in Flight Physics, 7 (1), 99-110 . [10] White, F.M. (2011). Fluid Mechanics. Seventh Edition, McGraw-Hill. [11] Blazek, J. (2015). Computational Fluid Dynamics: Principles and Applications. Third Edition, Butterworth-Heinemann. [12] Antoniadis, A.F., Drikakis, D., Zhong, B., Barakos, G., Steijl, R., Biava, M., Vigevano, L., Brocklehurst, A., Boelens, O., Dietz, M., Embacher, M., & Khier, W. (2012). Assessment of CFD methods against experimental flow measurements for helicopter flows. Aerospace Science and Technology, 19 (1), 86–100.
[13 [شیخی، ح، و سقایی، ع. (1395 .(ارزیابی عملکرد و اعتبارسنجی نرمافزار فلوئنت در تخمین ضرایب آیرودینامیک بدنه بالگرد بر اساس روش آزمون فرض، دومین کنفرانس بین المللی دستاوردهای نوین پژوهشی در صنایع، مکانیک و هوافضا.
[14] Bayarri, M.J., Berger, J.O., Paulo, R., Sacks, J. Cafeo, J.A., Cavendish, J., Lin, C-H., & Tu, J. (2007). A Framework for Validation of Computer Models. Technometrics, 49 (2), 138-154. [15] Sarıkaya, M., & Güllü, A. (2014). Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. Journal of Cleaner Production, 65 (1), 604-616. [16] Hernández, S., & Díaz, J. (2012). An application of Taguchi’s method to robust design of aircraft structures. WIT Transactions on The Built Environment, 124 (1), 3-12. [17] Siva Prasad, K., Srinivasa Rao, C.H., & Nageswara Rao, D. (2012), Application of Design of Experiments to Plasma Arc Welding Process: A Review. J. Braz. Soc. Mech. Sci. & Eng., 34 (1), 75- 81.