آنالیز اثرات پارامترهای اصلی شکل هندسی بدنه بالگرد بر ضرایب آیرودینامیکی با بکارگیری طرح تاگوچی و متدولوژی رویه پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

مهندسی صنایع، فنی و مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

چکیده

در طراحی بالگرد، تعیین شکل هندسی بدنه از مسائل اصلی و اولیه می‌باشد که بر مشخصات عملکردی بالگرد موثر می‌باشد. ضرایب آیرودینامیکی بدنه بالگرد معیار اصلی تعیین کننده کیفیت و مناسب بودن شکل هندسی بدنه بالگرد محسوب می‌شوند. طراحی بهینه شکل هندسی بدنه بالگرد فعالیتی پیچیده می‌باشد و تعیین اثرات پارامترهای مختلف هندسه بالگرد بر ضرایب آیرودینامیکی ضروری است. در این مقاله، طراحی آزمایشات کامپیوتری بر مبنای شبیه‌سازی دینامیک سیال محاسباتی به منظور مطالعه اثرات پارامترهای اصلی شکل هندسی بدنه بالگرد، نظیر نسبت بزرگترین عرض بدنه بالگرد به طول بالگرد، نسبت بزرگترین ارتفاع بدنه بالگرد به طول بالگرد و نسبت شعاع انحناء دماغه به بزرگترین عرض بدنه بالگرد، بر ضرایب آیرودینامیکی پسا، برآ و گشتاور پیچشی بکار برده شده است. آزمایشات بر اساس آرایه متعامد L25 (53) تاگوچی طراحی شده است. برای تعیین ارتباط میان ضرایب آیرودینامیکی و پارامترهای شکل هندسی بدنه بالگرد و میزان اهمیت هر پارامتر در ضرایب آیرودینامیکی، از نمودارهای رویه سه بعدی، نسبت‌های سیگنال به نویز، میانگین اثرات اصلی، متدولوژی رویه پاسخ و آنالیز واریانس استفاده شده است. همچنین، مدل‌های ریاضی برای تخمین ضرایب آیرودینامیکی پسا، برآ و گشتاور پیچشی از طریق متدولوژی رویه پاسخ توسعه داده شد. نتایج در سطح اطمینان 95 درصد نشان می‌دهد که موثرترین پارامتر در مقدار ضریب پسای بدنه بالگرد پارامتر نسبت بزرگترین ارتفاع بدنه بالگرد به طول بالگرد و در ضرایب برآ و گشتاور پیچشی پارامتر نسبت بزرگترین عرض بدنه بالگرد به طول بالگرد می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of the effects of the main parameters of the geometric shape of the helicopter fuselage on the aerodynamic coefficients using Taguchi design and response procedure methodology

نویسندگان [English]

  • Hossein Shaykhi
  • Abbas Saghaee
Industrial Engineering, Technical and Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
چکیده [English]

In helicopter design, determining the geometric shape of the fuselage is one of the main and primary issues that affect the performance characteristics of the helicopter. The aerodynamic coefficients of the helicopter fuselage are the main criteria for determining the quality and appropriateness of the geometric shape of the helicopter fuselage. Optimal design of helicopter body geometry is a complex activity and it is necessary to determine the effects of different parameters of helicopter geometry on aerodynamic coefficients. In this paper, design of computer experiments based on simulation of computational fluid dynamics to study the effects of the main parameters of the helicopter body geometry, such as ratio of largest helicopter body width to helicopter length, ratio of largest helicopter body height to helicopter length and nose to radius of curvature radius ratio The fuselage is based on the aerodynamic coefficients of drag, lift and torsional torque. The experiments are based on Taguchi's orthogonal array L25 (53). To determine the relationship between aerodynamic coefficients and parameters of the geometric shape of the helicopter fuselage and the importance of each parameter in aerodynamic coefficients, three-dimensional procedure diagrams, signal to noise ratios, mean of main effects, response procedure methodology and analysis of variance were used. Also, mathematical models were developed to estimate the aerodynamic coefficients of drag, lift and torsional torque through the response procedure methodology. The results at 95% confidence level show that the most effective parameter in the value of the helicopter body drag coefficient is the ratio of the largest height of the helicopter body to the length of the helicopter and in the lift and torsional torque parameters is the ratio of the largest width of the helicopter to the length of the helicopter.

کلیدواژه‌ها [English]

  • Computational Fluid Dynamics (CFD)
  • aerodynamic coefficients
  • Taguchi design
  • Response surface methodology (RSM)
  • analysis of variance (ANOVA)
[1] Wang, G.G., & Shan, S. (2006). Review of Metamodeling Techniques in Support of Engineering Design Optimization. Journal of Mechanical Design, 129 (4), 370-380. [2] Ahmed, M.Y.M., & Qin, N. (2009). SurrogateBased Aerodynamic Design Optimization: Use of Surrogates in Aerodynamic Design Optimization. 13th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT13-AE-14. [3] Gordon Leishman, J. (2006). Principles of Helicopter Aerodynamics. Second Edition, Cambridge University Press. [4] Walsh, J.L., Bingham, G.J., & Riley, M.F. (1985). Optimization Methods Applied to the Aerodynamic Design of Helicopter Rotor Blades. National Aeronautics and Space Administration (NASA), Langley Research Center, NASA Technical Memorandum 89155, Virginia. [5] Vu, N.A., Lee, J.W., & Shu, J.I. (2013). Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance. Chinese Journal of Aeronautics, 26 (1), 1-8. [6] Vu, N.A., & Lee, J.W. (2015). Aerodynamic design optimization of helicopter rotor blades including airfoil shape for forward flight. Aerospace Science and Technology, 42 (1), 106-117. [7] Leusink, D., Alfano, D. Cinnella, P., & Robinet, J-C. (2013). Aerodynamic rotor blade optimization at Eurocopter - a new way of industrial rotor blade design. 51st AIAA Aerospace Sciences Meeting, AIAA 2013-0779. [8] Prouty R.W. (2001). Helicopter Performance, Stability, and Control. Second Edition, Krieger Publishing Company. [9] Reß, R., Grawunder, M., & Breitsamter, C.H. (2015). AERODYNAMIC ANALYSIS OF A HELICOPTER FUSELAGE WITH ROTATING ROTOR HEAD. Progress in Flight Physics, 7 (1), 99-110 . [10] White, F.M. (2011). Fluid Mechanics. Seventh Edition, McGraw-Hill. [11] Blazek, J. (2015). Computational Fluid Dynamics: Principles and Applications. Third Edition, Butterworth-Heinemann. [12] Antoniadis, A.F., Drikakis, D., Zhong, B., Barakos, G., Steijl, R., Biava, M., Vigevano, L., Brocklehurst, A., Boelens, O., Dietz, M., Embacher, M., & Khier, W. (2012). Assessment of CFD methods against experimental flow measurements for helicopter flows. Aerospace Science and Technology, 19 (1), 86–100.
[13 [شیخی، ح، و سقایی، ع. (1395 .(ارزیابی عملکرد و اعتبارسنجی نرمافزار فلوئنت در تخمین ضرایب آیرودینامیک بدنه بالگرد بر اساس روش آزمون فرض، دومین کنفرانس بین المللی دستاوردهای نوین پژوهشی در صنایع، مکانیک و هوافضا.
[14] Bayarri, M.J., Berger, J.O., Paulo, R., Sacks, J. Cafeo, J.A., Cavendish, J., Lin, C-H., & Tu, J. (2007). A Framework for Validation of Computer Models. Technometrics, 49 (2), 138-154. [15] Sarıkaya, M., & Güllü, A. (2014). Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. Journal of Cleaner Production, 65 (1), 604-616. [16] Hernández, S., & Díaz, J. (2012). An application of Taguchi’s method to robust design of aircraft structures. WIT Transactions on The Built Environment, 124 (1), 3-12. [17] Siva Prasad, K., Srinivasa Rao, C.H., & Nageswara Rao, D. (2012), Application of Design of Experiments to Plasma Arc Welding Process: A Review. J. Braz. Soc. Mech. Sci. & Eng., 34 (1), 75- 81.