جایگزینی آزمون نسبت احتمال دنباله ای با ماسک V در نمودارکنترل جمع تجمعی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 آمار، ریاضی و کامپیوتر، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 آمار، ریاضی و آمار، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

نمودار کنترل جمع تجمعی در اغلب کتب کنترل کیفیت بدون توجه به فرمولهای آماری نهفته در پشت ماسک Vمطرح شده است. در این مقاله پس از معرفی و مرور نمودار کنترل جمع تجمعی، به بررسی قاعدهی تصمیمگیری و ارتباط آن با آزمونهای نسبت احتمال دنبالهای پرداخته شده است. بسیاری از مراجع و کتب کنترل کیفیت روش ماسک Vرا معادل آزمون جمع تجمعی با دادههای وارونیافته میدانند. گر چه این دو روش مشابهتهای زیادی با یکدیگر دارند، اما قواعد تصمیمگیری آنها با یکدیگر یکسان و معادل نیست. به منظور شفافسازی بیشتر، در این مقاله تشابهات و تفاوتهای دو رویکرد مذکور مورد بررسی و مقایسه قرار گرفته شده است.

کلیدواژه‌ها


[1] بهبودیان، ج. )۱۳۷۱ .)آمار ریاضی. انتشارات امیرکبیر.

[2] پرچمی، ع. و ماشینچی، م. )۱۳4۱ .)کنترل کیفیت آماری. انتشارات دانشگاه شهید باهنر کرمان.

[3] مقدس، س.م. و صالحاولیاء، م. )۱۳۷۱ .)کنترل کیفیت: سیستم، سازماندهی، روشهای آماری. جهاد دانشگاهی صنعتی شریف.

[4] مونتگمری )۱۳۷۶ .)کنترل کیفیت آماری. ترجمهی رسول نورالسناء. انتشارات دانشگاه علم و صنعت.

[5] نقندریان، ک. )۱۳۸9 .)کنترل کیفیت آماری. انتشارات دانشگاه علم و صنعت

[6] Armitage, P. (1950). Sequential Analysis with More than Two Alternative Hypotheses, and its Relation to Discriminant Function Analysis. Journal of the Royal Statistical Society, 12(1), 137-144.

[7] Biswas, S. (1996). Statistics of Quality Control: Sampling Inspection and Reliability. New Age International Publishers Eastern Ltd.

[8] Goel, A. L. (1982). Cumulative Sum Control Charts. Encyclopedia of Statistical Sciences. S. Kots and N. L. Johnson, Eds, Vol. 2, John Wiley & Sons, New York, 233-241.

[9] Goel, A. L. (2011). Cumulative sum control charts. In Handbook of Methods and Applications of Statistics: Engineering, Quality Control, and Physical Sciences, N Balakrishnan (ed.). John Wiley & Sons: New York, 120-129.

[10] Graham, M. A., Chakraborti, S., Mukherjee, A. (2014). Design and implementation of CUSUM exceedance control charts for unknown location. International Journal of Production Research, 52(18), 5546-5564.

[11] Grant, E. L., Leavenworth, R. S. (1988). Statistical Quality Control. 6th Ed., McGraw. New York.

[12] Johnson, N. L. (1961). A simple theoretical approach to cumulative sum control charts. Journal of the American Statistical Association, 56, 835- 840.

[13] Johnson, N. L. , & Leone, F. C. (1964). Statistics and Exprimental Design in Engineering and the Physical Science, 1, John Wiley & Sons, New York.

[14] Jones, L. A. , Champ, C. W., Rigdon, S. E. (2004). The run length distribution of the CUSUM with estimated parameters. Journal of Quality Technology, 36(1), 95-108.

[15] Lucas, J. M. , & Crosier R. B. (1982). Fast initial response for CUSUM schemes: Give your CUSUM a head start. Technometrics, 24(3), 199- 205.

[16] Montgomery, D.C. (1985). Introduction to Statistical Quality Control. John Wiley & Sons, New York.

[17] Mood, A.M., Graybill, F.A. , & Boes, D.C. (1974). Introduction to the Theory of Statistics. McGraw-Hill, Tokyo.

[18] Mukherjee, A., Graham, M. A., Chakraborti S. (2013). Distribution-free exceedance CUSUM control charts for location. Communications in Statistics – Simulation and Computation, 42(5), 1153– 1187.

[19] Polunchenko, A. S. (2016). A Note on Efficient Performance Evaluation of the Cumulative Sum Chart and the Sequential Probability Ratio Test. Applied Stochastic Models in Business and Industry, Accepted.

[20] Rohatgi, V.K. , & Ehsanes Saleh, A.K. (2001). An Introduction to Probability and Statistics. John Wiley & Sons, New York, 2nd edition.

[21] Srinivasa Rao, G. (2013). One-sided cumulative sum (CUSUM) control charts for the erlang-truncated exponential distribution. Computational Methods in Science and Technology, 19(4), 229-234.

[22] Wieringa, J.E. (1999). Statistical process control for serially correlated data. PhD Thesis. University of Groningen, Netherlands.

[23] Zanella, A. (1991). On the relation between Wald’s sequential tests and the cusum control charts for sample means: correcting a wrong interpretation. Statistica Applicata, 4, 493-519.