شبیه سازی هزینه حمل و نقل طراحی شبکه زنجیره تأمین با در نظر گرفتن تقاضای وابسته به قیمت و کیفیت

نوع مقاله: مقاله پژوهشی

نویسندگان

مهندسی صنایع، فنی و مهندسی، دانشگاه آزاد اسلامی واحد دماوند، تهران، ایران

چکیده

طراحی مناسب شبکه، اثرات بسیاری بر عملکرد، بهره وری و اثربخشی زنجیره های تأمین در رسیدن به اهداف انتظاری و برآورده نمودن نیازهای مشتریان دارد. در این پژوهش، یک مدل چندهدفه ی چندسطحی برای طراحی شبکه ی زنجیره تأمین با در نظر گرفتن قیمت- گذاری، سطح کیفی محصولات و اختلال ارائه شده است. هزینه ی حملونقل هر وسیلهی نقلیه یک تابع تصادفی پویا و نه پارامتر فرض شده است. بنابراین از شبیه سازی گسسته-پیشامد برای ارزیابی هزینه های حمل ونقل استفاده شده است. با توجه به نقش مهم مفاهیم ریسک و اختلال در طراحی شبکه ی زنجیره تأمین، کمینه سازی ریسک به همراه بیشینه سازی سود با توجه به مفاهیم قیمت گذاری و کیفیت، به عنوان توابع هدف تعریف شده اند. تقاضای زنجیره تأمین تابعی خطی از قیمت و سطح کیفی محصولات در نظر گرفته شده است. در نهایت، مسئله ی طراحی شبکه زنجیره تأمین با شبیه سازی، ریسک و تقاضای وابسته به قیمت و کیفیت با الگوریتم NSGA-IIحل و نتایج با الگوریتم MOSA اعتبارسنجی شده اند.

کلیدواژه‌ها


[1] Kazemi, S. M. M., & Taki, P. (2012). Discrete event simulation of Packed groceries logistics supply system. 2012 4th International Conference on Computer Modeling and Simulation (ICCMS 2012). HongKong, IPCSIT, 22.

[2] Farahani, R. Z., Rezapour, S., Drezner, T., & Fallah, S. (2014). Competitive supply chain network design: An overview of classifications, models, solution techniques and applications. Omega, 45(0), 92–118. http://doi.org/http://dx.doi.org/10.1016/j.omega.2013. 08.006

[3] Shapiro, J. (2006). Modeling the supply chain. Cengage Learning.

[4] Karnon, J., & Afzali, H. H. A. (2014). When to use discrete event simulation (DES) for the economic evaluation of health technologies? A review and critique of the costs and benefits of DES. Pharmacoeconomics, 32(6), 547–558.

[5] Taki, P., & Kazemi, S. M. M. (2013). A Three Echelon Supply System: A Discrete Event Simulation. In Communication Systems and Network Technologies (CSNT), 2013 International Conference on (pp. 850–852). IEEE.

[6] Pidd, M. (1998). Computer simulation in management science.

[7] Li, X., & Wang, Q. (2007). Coordination mechanisms of supply chain systems. European Journal of Operational Research, 179(1), 1–16.

[8] Fugate, B., Sahin, F., & Mentzer, J. T. (2006). Supply chain management coordination mechanisms. Journal of Business Logistics, 27(2), 129–161.

[9] Xu, L., & Beamon, B. M. (2006). Supply chain coordination and cooperation mechanisms: an attribute‐based approach. Journal of Supply Chain Management, 42(1), 4–12.

[10] Thomas, D. J., & Griffin, P. M. (1996). Coordinated supply chain management. European Journal of Operational Research, 94(1), 1–15.

[11] Chopra, S., & Meindl, P. (2007). Supply chain management. Strategy, planning & operation. In Das Summa Summarum des Management (pp. 265–275). Springer.

[12] Xu, N., & Nozick, L. (2009). Modeling supplier selection and the use of option contracts for global supply chain design. Computers & Operations Research, 36(10), 2786–2800. http://doi.org/http://dx.doi.org/10.1016/j.cor.2008.12. 013

[13] Azad, N., Saharidis, G. K. D., Davoudpour, H., Malekly, H., & Yektamaram, S. A. (2013). Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach. Annals of Operations Research, 210(1), 125–163.

[14] Azad, N., Davoudpour, H., Saharidis, G. K. D., & Shiripour, M. (2014). A new model to mitigating random disruption risks of facility and transportation in supply chain network design. The International Journal of Advanced Manufacturing Technology, 70(9–12), 1757–1774.

[15] Singh, A. R., Mishra, P. K., Jain, R., & Khurana, M. K. (2012). Design of global supply chain network with operational risks. The International Journal of Advanced Manufacturing Technology, 60(1–4), 273– 290.

[16] Giri, B. C., & Bardhan, S. (2014). Coordinating a supply chain with backup supplier through buyback contract under supply disruption and uncertain demand. International Journal of Systems Science: Operations & Logistics, 1(4), 193–204.

[17] Xu, M., Wang, X., & Zhao, L. (2014). Predicted supply chain resilience based on structural evolution against random supply disruptions. International Journal of Systems Science: Operations & Logistics, 1(2), 105–117.

[18] Fang, H., & Xiao, R. (2014). Cycle quality chain early warning network with e-channel lead time disruption. International Journal of Systems Science: Operations & Logistics, 1(1), 47–67.

[19] Yu, H., Sun, C., & Chen, J. (2007). Simulating the supply disruption for the coordinated supply chain. Journal of Systems Science and Systems Engineering, 16(3), 323–335.