تخصیص سرمایه گذاری دفاع از سیستم‌های همبسته با رویکرد بهبود قابلیت اطمینان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده فنی و مهندسی، گروه مهندسی صنایع، دانشگاه شاهد،تهران، ایران

2 دانشکده مهندسی صنایع ، دانشگاه پیام نور تهران، تهران، ایران

3 دانشیار، گروه مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

امروزه دفاع از مناطق و منابع حسّاس، موضوعی بنیادی است که وسعت وگستره آن، تمامی زیر ساخت­های کلیدی را دربر می‌گیرد و برای رسیدن به هدف کاهش خسارات و صدمات ناشی از حمله مهاجم، به­کارگیری استراتژی‌های آگاهانه و مفید، لازم و ضروری است. در این تحقیق، مدل­سازی برای بهینه­یابی سرمایه‌گذاری حفاظت از سیستم­هایی درنظر گرفته شده است که ساختار قابلیت اطمینان آنها به صورت سری- موازی بوده و دارای همبستگی عملکردی با یکدیگر هستند. به­طور کلّی در این تحقیق، ابتدا با درنظرگرفتن استقلال عملکردی زیرسیستم‌ها، احتمالات موجود در حمله موفق، ساختار قابلیت اطمینان سیستم و رویکرد تئوری بازی‌ها در پیدانمودن نقطه تعادل، یک مدل برنامه‌ریزی غیرخطی برای تعیین میزان سرمایه‌گذاری دفاع از سیستم‌ها، ارائه شده است. سپس با تعیین روابط قابلیت اطمینان با وجود همبستگی عملکردی بین زیرسیستم‌ها، یک مدل برنامه‌ریزی خطی برای تعیین ضریب همبستگی زیرسیستم­ها و تخصیص مجدد سرمایه‌گذاری برای دفاع از سیستم­ها، معرفی می­شود. در نهایت، مدل ارائه‌شده تحقیق برای یک مثال عددی استفاده‌شده و نتایج آن مورد تجزیه و تحلیل قرار گرفته است.

کلیدواژه‌ها


[1] Zio E, Rocco C.M. (2008). “Security assessment in complex networks exposed toterrorist hazard: A simulation approach.” International Journal of Critical Infrastructures, Vol. 4, No. 1, PP. 80–95.

[2] Sandler T, Siqueira K. (2009). “Games and terrorism: recent developments.” Simulation and Gaming, Vol. 40, No. 2, PP. 164–192.

[3] Xinyang D, Xing Z, Xiaoyan S, Felix C , Yong H, Rehan S,Yong D. (2014). “An evidential game theory framework in multi Criteria decision making process.” Applied Mathematics and Computation, Vol. 244, No. 1, PP.783–793.

[4] Yong W, Gengzhong F, Nengmin W, Huigang L. (2015). “Game of information security investment: Impact of attack types and network vulnerability.” Expert Systems with Applications, Vol. 42, No. 1, PP. 6132–6146.

[5] Hausken K. (2008). “Strategic defense and attack for reliability systems.” Reliability Engineering and System Safety, Vol. 181, No. 1, PP.1740–1750.

[6] Hausken K. (2010). “Defense and attack of complex and dependent systems.” Reliability Engineering and System Safety, Vol. 95, No. 1, PP. 29-42.

[7] Levitin G, Hausken K, Dai Y. (2014). “Optimal defense with variable number of overarching and individual protections.” Reliability Engineering and System Safety, Vol. 123, No. 1, PP. 81–90.

[8] Feller W. An introduction to probability and its application. 3rd ed. NewYork: Wiley; 1968.

[9] Xing L, Levitin G. (2013). “BDD-based reliability valuation of phased-mission systems with internal/external common-cause failures.” Reliability Engineering and System Safety, Vol. 112, No. 4, PP. 145–153.

[10] Hamill M, Goseva-Popstojanova K. (2009). “Common trends in softwarefault and failure data.” IEEE Transactions on Software Engineering, Vol. 35, No. 4, PP.484–496.

[11] Kristiansen M, Winther R, Natvig B. (2011). “A bayesian hypothesistesting approach for finding upper bounds for probabilities that pairs of software components fail simultaneously.” International Journal of Reliability, Quality and Safety Engineering, Vol. 18, No. 3, PP. 209–236.

[12] Fiondella L. (2010). “Reliability and sensitivity analysis of coherent systems with negatively correlated component failures.” International Journal of Reliability, Quality and Safety Engineering, Vol. 17, No. 5, PP. 505–529.

[13] Lin Y.K, Chang P.C, Fiondella L. (2012). “A study of correlated failures on the network reliability of power transmission systems.” Electrical Power and Energy Systems, Vol. 43, No. 1, PP. 954–960.

[14] Fiondella L, Rajasekaran S, Gokhale S. (2013). “Efficient software reliability analysis with correlated component failures.” IEEE Transactions on Reliability, Vol. 62, No. 1, PP. 244–255.

[15] Frank P.C, Tahani C.M. (2015). “Predictive inference for system reliability after common-cause component failures.” Reliability Engineering and System Safety, Vol. 135, No. 1, PP. 27–33.

[16] Fiondella L, Xing L. (2015). “Discrete and continuous reliability models for systems with identically distributed correlated components.” Reliability Engineering and System Safety, Vol. 133, No. 1, PP. 1–10.

[17] Tullock G. (1980). “Efficient rent-seeking. In: Buchanan JM, Tollison RD, Tullock G, editors. Toward a theory of the rent-seeking society.”  College Station: Texas A&M University Press, PP. 97–112.

[18] Fontanini W, Ferreira P.A.V. (2014). “A game-theoretic approach for the web services scheduling problem.” Expert Systems with Applications, Vol. 41, No. 1, PP. 4743–4751.

[19] Zhongping W, Lijun M, Guangmin W. (2014). “Estimation of distribution algorithm for a class of nonlinearbilevel programming problems.” Information Sciences, Vol. 256, No. 1, PP. 184–196.

[20] Konak A, Kulturel-Konak S, Lawrence V. S. (2015). “A game-theoretic genetic a      lgorithm for the reliable server assignmentproblem under attacks.” Computers & Industrial Engineering, Vol. 85, No. 1, PP. 73–85.

[21] Prentice R. (1986). “Binary regression using an extended beta-binomial distribution, with discussion of correlation induced by covariate measurement errors.” Journal of American Statistical Association, Vol. 81, No. 394, PP. 321–327.