روشی جدید برای مدل‌سازی قابلیت اطمینان سیستم‌های مکانیکی با نرخ شکست وانی شکل براساس آزمون‌های سانسور شده و شتاب‌دهنده

نوع مقاله: مقاله پژوهشی

نویسنده

مربی گروه آمار، دانشکده ریاضی و علوم کامپیوتر، دانشگاه دامغان، دامغان، ایران

چکیده

رفتار تابع نرخ شکست برخی سیستم­های مکانیکی وانی شکل است. مدل وایبل معمولی قادر نیست طول عمر چنین سیستم­هایی با تابع نرخ شکست وانی شکل را بطور کامل مدل­سازی نماید. در این مقاله از یک توزیع وایبل تعمیم یافته جدید برای مدل­سازی توابع نرخ شکست با رفتار وانی شکل استفاده شده است. این مدل بر روی سه مجموعه داده مورد ارزیابی قرار گرفته است. در این سه مجموعه داده، به منظور کاهش زمان اجرای آزمون طول عمر از آزمون­های شتاب­دهنده و سانسور­شده نوع یک استفاده شده است. پارامترهای مدل نیز براساس روش ماکزیمم درستنمایی برآورد شده­اند. شاخص­های آکائیک، لگاریتم تابع درستنمایی و معیاراطلاع بیزی به دست آمده، حاکی از کارایی این مدل برای داده­های حاصل از انجام آزمون های طول عمر ذکر شده است. بنابراین میانگین طول عمر پیش­بینی شده از اعتبار خوبی برخوردار است.

کلیدواژه‌ها


[1] Lotfollahi Yaghin,  M. A., Koohdaragh, Ettefagh, M., Mojtahedi, A. (2016). Damage detection in beam using dynamic excitationsystem by experimental. Modares Mechanical Engineering, 16(4), 307-314.

[2] Fakoor, M., Motamen, N. (2015). System design algorithm for mission-oriented systems with reliability approach. Modares Mechanical Engineering, 14(13), 7-18.

[3] Farsi, M. A., Najafi, M. (2015). Reliability Estimation of Multi-State System Based On Fault Tree Analysis. Modares Mechanical Engineering, 15(1), 257-266.

[4] Hjorth, U. (1980). A Reliability Distribution with Increasing, Decreasing, Constant and Bathtub-Shaped Failure Rates. Technometrics, 22(1), 99-107.

[5] Zhang, Q., Hua, C., Xu, G., A mixture Weibull proportional hazard model for mechanical system failure prediction utilising lifetime. Mechanical Systems and Signal Processing, 43, 103–112.

[6] Guo, H., Watson, S., Tavner, P., Xiang, J. (2009). Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation. Reliability Engineering and System Safety, 94, 1057–1063.

[7] Veeramany, A., Pandey, M. D. (2011). Reliability analysis of nuclear component cooling water system using semi-Markov process model. Nuclear Engineering and Design, 241, 1799–1806.

[8] Mijailovic, V. (2010). Optimal spares availability strategy for power transformer components. Electric Power Systems Research, 80, 987–992.

[9] Castet, J. F., Saleh, J. H. (2010). Single versus mixture Weibull distributionsfor nonparametric satellite reliability, Reliability Engineering and System Safety, 95, 295–300.

[10] Bebbington, M. S., Lai, CD., Zitikis, R. (2007). A flexible Weibull extension. Reliability Engineering and System Safety, 92(6), pp.719–26.

[11] Marshall, A. W., Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84(3), 641–52.

[12] Lai, C. D., Xie, M., Murthy, D. N. P. (2003). A modified Weibull distribution. IEEE Transactions on Reliability, 52(1), 33–7.

[13] Phani, K. K. (1987). A new modified Weibull distribution function. Communicationsof the American Ceramic Society, 70(8), 182–4.

[14] Nadarajah, S., Cordeiro, G. M., E. M. M. Ortega (2011). General results for the beta-modified Weibull distribution. Journal of Statistical Computation and Simulation, 81(10), 1211–32.

[15] Saad, J. A., Jingsong, Y. (2013). A new modified Weibull distribution. Reliability Engineering and System Safety, 111, 164–170.

[16] Xie, M., Lai, C. D. (1995). Reliability analysis using an additive Weibull model with bathtub-shaped failure ratefunction. Reliability Engineering and System Safety, 52, 87–93.

[17] Kuo, W., Zuo, M. J. (2002). Optimal reliability modeling: principles and applications, Wiley.

[18] Fisher, R. A. (1922). On the mathematical foundation of theoretical statistics. Philosophical Transactions of the Royal Society A, 222, 309–68.

[19] Lindley, D. V. (1980). Approximate Bayesian method. Trabajos Estadist, 31(1), 223–45.

[20] Upadhyaya S.K., Gupta A. (2010). A Bayes analysis of modified Weibull distribution via Markov chain Monte Carlo simulation. Journal of Statistical Computation and Simulation, 80(3), 241–54.

[21] Aarset, M. V. (1987). How to identify bathtub hazard rate. IEEE Transactions on Reliability, 36(1), 106–8.

[22] Silva, G.O., Ortega E.M., Cordeiro G.M., The beta modified Weibull distribution. Lifetime Data Analysis, 16, 409–30, 2010.

[23] Meeker, W.Q., Escobar, L. A. (1998). Statistical methods for reliability data. New York: John Wiley.

[24] Meeker, W. Q., Hahn, G. J. (1985). How to plan an accelerated life test-some practical guidelines. Statistical techniques, 10.

[25] Pham, H. (2003). Handbook of Reliability Engineering, Springe.