تشخیص عیب بلبرینگ ماشین‌های صنعتی از طریق صوت‌سنجی با استفاده از شبکه عصبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه آزاد اسلامی واحد فیروزکوه، فیروزکوه، ایران،

2 دانشگاه ازاد اسلامی، واحد فیروزکوه، دانشکده مدیریت و حسابداری، گروه مدیریت صنعتی، فیروزکوه، ایران

3 دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، دانشکده مدیریت و اقتصاد، گروه مدیریت صنعتی، تهران، ایران

4 کارشناس ارشد مدیریت، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، دانشکده مدیریت و اقتصاد، گروه مدیریت صنعتی، تهران، ایران

چکیده

هدف اصلی این پژوهش شناسایی عوامل ایجاد ارتعاش و عیوب قابل شناسایی بلبرینگ از طریق صوت‌سنجی به کمک شبکه عصبی چند لایه است. شبکه‌ی عصبی از روش‌های هوشمند محسوب می‌شود و با توجه به خاصیت‌های اصلی آن یعنی قابلیت بالایش برای تخمین توابع غیرخطی و یادگیری تطبیقی، برای عیب‌یابی ارتعاشات مکانیکی ماشین‌آلات یعنی صوت‌سنجی بلبرینگ و تحلیل فرکانسی آنها مورد استفاده قرار گرفته است. برای جمع‌آوری داده‌ها، یک نوع بلبرینگ مخروطی ساچمه‌ای سالم و یک بلبرینگ مشابه آن که ساچمه‌هایش معیوب بودند، در دستگاه‌های مته رومیزی و مته رادیال پایه‌دار، در 5 دور مختلف مورد استفاده و بررسی قرار گرفته است. در این پژوهش، با توجه به شبکه‌ای دارای 10 لایه پنهان، فرکانس سیگنال به عنوان ورودی شبکه عصبی چند لایه در نظر گرفته شده و در نهایت عیوب بلبرینگ و علت احتمالی آن تعیین گردیده و اقدامات اصلاحی پیشنهاد شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Detection of bearing defects of industrial machines through audiometry using neural network

نویسندگان [English]

  • Sayed Ahmad ShaybetAlhamdi 1
  • Abbas Toloieashlaghi 3
  • Masoumeh AmirEbrahimikhoshmehr 4
1 Industrial Management, Faculty of Management and Accounting, Islamic Azad University, Firoozkooh Branch, Firoozkooh, Iran,
3 Islamic Azad University, Science and Research Branch, Faculty of Management and Economics, Department of Industrial Management, Tehran, Iran
4 Master of Management, Islamic Azad University, Science and Research Branch, Faculty of Management and Economics, Department of Industrial Management, Tehran, Iran
چکیده [English]

The main purpose of this study is to identify the causes of vibration and detectable defects of bearings through sonometry using a multilayer neural network. Neural network is an intelligent method and due to its main properties, ie its high ability to estimate nonlinear functions and adaptive learning, it has been used to troubleshoot mechanical vibrations of machines, ie bearing acoustics and their frequency analysis. To collect the data, a type of healthy ball bearing cone bearing and a similar bearing with defective bullets were used and tested in desktop drills and radial-based drills in 5 different rounds. In this study, according to the network with 10 hidden layers, the signal frequency is considered as the input of the multilayer neural network and finally the bearing defects and its probable cause are determined and corrective measures are proposed.

کلیدواژه‌ها [English]

  • vibration
  • ball bearings
  • Neural Network
  • Diagnosis
  • Quality Control
[1] Nasr azadani,M. (2006), Rouling bearing publication refinery, Isfahan, Iran (In Persian).
[2] Noori kamary, M. (2011), Rotating machines trouble shooting by Fuzzy-Neural Network, master thesis, university of Rajaee,Department of Mechanical Engineering, Tehran,Iran (In Persian).
[3] Menhaj, M. B. (2000), Fundamentals of neural networks,p534-529,1388 (In Persian).
[4] Khodabakhshian karegar, R. (2008) .Engineering preventive maintenance and condition monitoring in machine building.  5th International conference on maintenance,pp.44-57.
[5] Chacon, Juan Luis Ferrando, Vassilios Kappatos, Wamadeva Balachandran, Tat-Hean Gan. “A novel approach for incipient defect detection in rolling bearings using acoustic emission technique” Applied Acoustics, vol. 89, 2015, pp. 88-100.
[6] yang Dou, Jianguo Yang, Jiongtian Liu, Yingkai Zhao,A rule-based intelligent method for fault diagnosis of rotating machinery,Knowledge-Based Systems, Volume 36, December 2012, Pages 1-8
[7] Yoshioka T. , T. Fujiwara. “New acoustic emission source locating system for the study of rolling contact fatigue", 1984, pp. 183-186.
[8] Wheitner, J. , D. Houser, C. Blazakis. “Gear tooth bending fatigue crack detection by Acoustic Emissions and tooth compliance. ”A SME technical paper 93 FTM9, 1993, pp. 1-7.
[9] Parsian,amir, Martin Magnevall, Tomas Beno, Mahdi Eynian, 2017, Sound Analysis in Drilling, Frequency and Time Domains, Procedia CIRP, Volume 58, 2017, Pages 411-415
[10] Peng Z. K. , Chu F. L. , Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography, Mechanical systems and signal processing, 2004, vol. 18, pp. 199-221.
[11] Moavenian, M. (2007). Troubleshooting vehicle active suspension system with regard to non-linear behavior Hydraulic actuator and controller. noticeably impaired.  Second Technical Conference of machinery condition monitoring and fault detection. Pp,417-428.
[12] Mosavian, A. (2012). Fault diagnosis in engine spark plug by vibration analysis using neural network. The journal of engine research. Vol.28,pp.21-29.
[13] Brendan Smith, Qing Zhao (2015) Modal Structure Imbalance Fault Detection For Rotating Machines,IFAC-Papers On Line, Volume 48, Issue 21, Pages 1420-1425
[14] Shafabakhsh, GH.(2011). Choose the optimal neural network algorithm for analysis of rigid pavement roads, Journal of Transportation Engineering, Vol. 3(1).pp,43-54.
[15] Siano, M.A. Panza,2017,Sound quality analysis of the powertrain booming noise in a Diesel passenger car,Energy Procedia, Volume 126, September 2017, Pages 971-978
[16] Omar D. Mohammed, Matti Rantatalo, 2016, Dynamic response and time-frequency analysis for gear tooth crack detection,Mechanical Systems and Signal Processing, Volumes 66–67, January 2016, Pages 612-624
 [17] Shafabakhsh, GH.(2011). Choose the optimal neural network algorithm for analysis of rigid pavement roads, Journal of Transportation Engineering, Vol. 3(1).pp,43-54.
[18] Sadeghi, H. (2007). Troubleshooting intelligent transmission using neural networks and discrete wavelet transform. The journal of engine research Tabriz.pp,1-10.