یک روش نیم‌پارامتری برای بهینه‌سازی مسائل چند پاسخی: مطالعه موردی در بهبود کیفیت دستگاه تزریق پلاستیک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهش‌گر آمار اجتماعی و اقتصادی، دانشگاه علامه طباطبایی، تهران، ایران

2 دانشکده آمار و اقتصاد، دانشگاه علامه طباطبایی، تهران، ایران

چکیده

بهینه‌سازی چندپاسخی که با روش رویه‌ی پاسخ انجام می‌شود، بسیار پرکاربرد است. قبل از بهینه‌سازی، نیازمند انتخاب و برازش مدل مناسب برای هر پاسخ هستیم. یک مسئله اصلی که ممکن است به دلیل برازش نادرست مدل‌ها و نرسیدن به راه‌حل‌های بهینه اتفاق بیفتد، بدمشخص‌سازی مدل است. روش مدل رگرسیونی استوار که یک روش نیم‌پارامتری برای براور‏د است می‌تواند از هر دو روش براورد پارامتری و ناپارامتری در مقابل بدمشخص‌سازی مدل عملکرد مناسب‌تری داشته باشد. در این پژوهش، استفاده از یک روش مدل رگرسیونی استوار برای بهبود براورد مدل پیشنهاد شده است و برازش‌های مناسب هر یک از پاسخ‌ها با یکی از روش‌های بهینه‌سازی چندپاسخی یعنی تابع مطلوبیت بررسی خواهد شد. در ادامه، یک مطالعه کاربردیبرای مقایسه‌ی روش‌های پارامتری‏‏، ناپارامتری و نیم‌پارامتری ارائه می‌شود. نتیجه‌های این مطالعه نشان می‌دهند که عملکرد مدل رگرسیونی استوار، در بسیاری از موقعیت‌ها و همچنین در مرحله‌ی مدل‌سازی، از دو روش دیگر مناسب‌تر است. ‏بنا بر این‏، نتیجه‌های بهینه‌سازی با مدل رگرسیونی استوار بسیار قابل اعتمادتر هستند.

کلیدواژه‌ها


[1] Mead, R , & Pike, D .J. (1975), A Review of Response Surface Methodology from aBiometric Viewpoint , Biometrics, 31(4), 803-851.

[2] Box, G. E. P. & Wilson, K. B. (1951), On the Experimental Attainment of Optimum conditions, Journal of the Royal Statistical Society, Series B (Methodological), 13(1),1–15.

[3] Vining, G .G., & Bohn, L. L. (1998), Response Surfaces for the Mean and Variance Using a Nonparametric Approach, Journal of Quality Technology, 30, 282-291.

 [4] Nadaraya, E. (1964),On Estimating Regression, Theory of Probability and Its Applications,9,141-142.

[5] Watson, G. (1964), Smoothing Regression Analysis, Sankhya, Series A26 ,359-372.

[6] Fan, J., & Gijbels, I. (1996), Local Polynomial Modeling and Its Applications, Chapman and Hall, London.

 

[7] Fan, J. & Gijbels, I. (2000), Local polynomial fitting, In: Schimek, M.G. (Ed.), Smoothing and Regression: Approaches, Computation, and Application, Wiley, NewYork,229-276.

[8] Anderson-Cook, C .M., & Prewitt, K. (2005), Parametric Methods for Modeling Data from Response Surface Designs”, Journal of Modern Applied Statistical Methods,4 ,106-119.

[9] Pickle, S. M. (2006), Semiparametric Techniques for Response Surface Methodology Ph.D. Dissertation. Department of Statistics, Virginia Polytechnic Institute State University Blacksburg, VA.

[10] Pickle, S. M., & Robinson, T. J., & Birch, J. B. & Anderson-Cook, C. M. (2006), A SemiParametric Approach to Robust Parameter Design, Journal of Statistical Planning and Inference.

[11] Hardle, W. (1990), Applied Nonparametric Regression, Cambridge Univ, Press, London.

[12] Mays, J. E. & Birch, J. B. (1998), Smoothing Considerations in Nonparametric and Semiparametric Regression”, Technical Report Number 98-2, Department of Statistics, Virginia Polytechnic Institute State University, Blacksburg, VA.

 

[13] Einsporn, R. & Birch, J. B. (1993), Model Robust Regression: Using Nonparametric Regression to Improve Parametric Regression Analysis, Technical Report 93-5. Department of Statistics, Virginia Polytechnic Institute State University, Blacksburg,VA.

 

[14] Mays, J .E., & Birch, J. B. & Starnes, B.A.(2001), Model Robust Regression: Combining Parametric, Nonparametric, and Semiparametric Methods, Journal of Nonparametric Statistics, 13, 245-277.

[15] Robinson, P. M. (1988), Root-N-Consistent Semiparametric Regression, Econometrica,56,931-954.

[16] Hardle, W., & Muller, M., & Sperlich, S. & Werwatz, A. (2004), Nonparametric and Semiparametric Models, Springer, Berlin.

 

[17] Rencher, A. C. (2002), Method of multivariate analysis, John Wiley and Sons, Inc.,New York.

 

[18] Khuri, A. I. (1996). Simultaneous Optimization of Multiple Responses Represented by Polynomial Regression Functions , Technometrics , 23, 363-375.

 

[19] Wan, W. & Birch, j. B. (2011), A Semiparametric Technique for the Multi-response Optimization Problem , Journal of Quality and Reliabillity Engineering International, 27, 47-59.

 

[20] Shah, K. H. & Montgomery, D. C. & Carlyle, W. M. (2004), Response Surface Modeling and Optimization in Multiresponse Experiments Using Seemingly Unrelated Regressions, Quality Engineering, 16(3), 387-397.