ارایه روشی نوین جهت مکان‌یابی اشیاء متحرک با استفاده از آنتن‌های مونوپل و ماتریس پراکندگی بمنظور افزایش کیفیت خدمت در هوشمندسازی پارکنیگ‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکاترونیک، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

2 استادیار، گروه مهندسی مکاترونیک، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

3 استادیار، گروه مهندسی علوم و فناوری شبکه، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

چکیده

موقعیت‌یابی خودرو در محیط پارکینگ بعنوان عاملی مهم جهت هوشمندسازی پارکنیگ‌ها بوده که در نتیجه‌ی آن هدایت خودرو امکان‌پذیر بوده که عاملی جهت افزایش کیفیت خدمت‌رسانی در پارکینگ خواهد بود. با توجه به بسته بودن محیط پارکینگ، موقعیت‌یابی اجسام در آن، از جمله مکان‌یابی اجسام در محیط‌های سرپوشیده می‌باشد. استفاده از امواج رادیویی و روش‌های مربوط به آن، بمنظور مکان‌یابی در محیط سرپوشیده، از جمله راهکارهای ارائه شده در این زمینه است. در برخی روش‌های دیگر این حوزه، تنها با استفاده از تجهیزات موجود در محیط (مشابه رادارهای مکان‌یاب)، مکان جسم در فضای سرپوشیده، محاسبه می‌گردد. از معایب هر دو این روش‌های می‌توان به نیاز به تجهیزات اضافی با قیمت‌های بالا، حساسیت بسیار زیاد نسبت به شرایط محیطی و پارازیت‌های موجود، اشاره نمود. در این پژوهش تلاش شده است تا با بهره‌گیری از آنتن‌های مونوپل و استفاده از ماتریس پراکندگی، فرآیند مکان‌یابی انجام پذیرد. بدین منظور در ابتدا محیط پارکینگ با صفحه‌ای شامل چند آنتن مونوپل شبیه‌سازی شده و با استفاده از نرم‌افزار مبتنی بر المان محدود، ماتریس پراکندگی برای حالت عدم حضور و حضور جسم در شرایط محیطی مختلف که شبیه‌سازی شده است، بدست می‌آید. پس از محاسبه‌ی ماتریس‌های پراکندگی، داده‌های مورد نیاز انتخاب شده و با استفاده از شبکه عصبی، هر یک از این مقادیر به یک موقعیت جسم نسبت داده می‌شود. در فاز بعد، به ازای قرار گرفتن جسم در موقعیت جدید، ماتریس پراکندگی مربوطه، بدست آمده و با مقایسه با اطلاعات جمع‌آوری شده در مرحله قبل، مکان جسم را محاسبه می‌نماید. این فرآیند مشابه با الگوریتم اثر انگشت می‌باشد با این تفاوت که بجای استفاده از مقادیر توان سیگنال از ماتریس پراکندگی شده است. از مزایای این روش می‌توان به عدم نیاز به کالیبراسیون و اندازه‌گیری دقیق موقعیت آنتن‌ها، قابلیت توسعه‌پذیری و ارائه راهکاری جدید جهت کاهش هزینه‌ها و افزایش دقت محاسبه‌ی موقعیت جسم اشاره کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Introducing a new method for locating moving objects using monopole antennas and scattering matrices in order to increase the quality of service in smart parking lots

نویسندگان [English]

  • Mohammad Rafie 1
  • Bahram Tarvirdizadeh 2
  • Alireza Hadi 2
  • hamidreza Memmarzadeh tehran 3
1 M.Sc., Department of Mechatronics Engineering, Faculty of Modern Science and Technology, University of Tehran, Tehran, Iran
2 Assistant Professor, Department of Mechatronics Engineering, Faculty of Modern Sciences and Technologies, University of Tehran, Tehran, Iran
3 Assistant Professor, Department of Network Science and Technology Engineering, Faculty of Modern Science and Technology, University of Tehran, Tehran, Iran
چکیده [English]

Positioning the car in the parking lot is an important factor to make the parking lots smarter, as a result of which it is possible to steer the car, which will be a factor to increase the quality of service in the parking lot. Due to the closed environment of the parking lot, locating objects in it, including locating objects in indoor environments. The use of radio waves and related methods to locate indoors is one of the solutions presented in this field. In some other methods in this field, the location of the object in the indoor space is calculated only by using the equipment available in the environment (similar to location radars). Disadvantages of both methods include the need for additional equipment at high prices, extreme sensitivity to environmental conditions and existing noise. In this research, an attempt has been made to perform the location process by using monopole antennas and scattering matrix. For this purpose, first, the parking environment is simulated with a plate containing several monopole antennas, and using finite element-based software, the scatter matrix is ​​obtained for the absence and presence of the object in different environmental conditions that have been simulated. After calculating the scattering matrices, the required data are selected and each of these values ​​is assigned to an object position using a neural network. In the next phase, in exchange for placing the object in the new position, the corresponding scattering matrix is ​​obtained and the object is calculated by comparing it with the information collected in the previous step. This process is similar to the fingerprint algorithm, except that instead of using the values ​​of signal strength, the matrix is ​​scattered. The advantages of this method include no need to calibrate and accurately measure the position of the antennas, scalability and provide a new solution to reduce costs and increase the accuracy of calculating the position of the object.

کلیدواژه‌ها [English]

  • Smart parking
  • Indoor location
  • Dispersion matrix
  • Dispersion parameter
  • Fingerprint algorithm
[1] Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things journal, 1(1), 22-32.
[2] Idris, M. Y. I., Leng, Y. Y., Tamil, E. M., Noor, N. M., & Razak, Z. (2009). Саг park system: a review of smart parking system and its technology. Information Technology Journal, 8(2), 101-113.
[3] Teodorović, D., & Lučić, P. (2006). Intelligent parking systems. European Journal of Operational Research, 175(3), 1666-1681.
[4] Koyuncu, H., & Yang, S. H. (2010). A survey of indoor positioning and object locating systems. IJCSNS International Journal of Computer Science and Network Security, 10(5), 121-128.
[5] Song, Z., Jiang, G., & Huang, C. (2011). A survey on indoor positioning technologies. In Theoretical and Mathematical Foundations of Computer Science (pp. 198-206). Springer, Berlin, Heidelberg.
[6] Zhang, D., Xia, F., Yang, Z., Yao, L., & Zhao, W. (2010, May). Localization technologies for indoor human tracking. In Future Information Technology (FutureTech), 2010 5th International Conference on (pp. 1-6). IEEE.
[7] Liu, J., Chen, R., Chen, Y., Pei, L., & Chen, L. (2012). iParking: An intelligent indoor location-based smartphone parking service. Sensors, 12(11), 14612-14629.
[8] Karl, H., Willig, A., and Holger, K., (2005) “Localization and positioning,” in Protocols and architectures for wireless sensor networks, New York, NY, United States: John Wiley & Sons, pp. 231–237.
[9] Brás, L., Carvalho, N. B., Pinho, P., Kulas, L., & Nyka, K. (2012). A review of antennas for indoor positioning systems. International Journal of Antennas and Propagation, 2012.
[10] Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), 1067-1080..
[11] Han, G., Xu, H., Duong, T. Q., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: a survey. Telecommunication Systems, 52(4), 2419-2436.
[12] Kaemarungsi, K. (2005, June). Efficient design of indoor positioning systems based on location fingerprinting. In Wireless Networks, Communications and Mobile Computing, 2005 International Conference on (Vol. 1, pp. 181-186). IEEE.
[13] Quan, M., Navarro, E., & Peuker, B. (2010). Wi-fi localization using rssi fingerprinting.
[14] Rzymowski, M., & Kulas, Ł. (2013, July). Design, realization and measurements of enhanced performance 2.4 GHz ESPAR antenna for localization in wireless sensor networks. In EUROCON, 2013 IEEE (pp. 207-211). IEEE.
[15] Rzymowski, M., Woznica, P., & Kulas, L. (2016). Single-anchor indoor localization using espar antenna. IEEE Antennas and Wireless Propagation Letters, 15, 1183-1186.
[16] Taillefer, E., Hirata, A., & Ohira, T. (2005). Direction-of-arrival estimation using radiation power pattern with an ESPAR antenna. IEEE Transactions on Antennas and Propagation, 53(2), 678-684.
[17] Rzymowski, M., Nyka, K., & Kulas, L. (2012, May). Enhancing performance of switched parasitic antenna for localization in Wireless Sensor Networks. In Microwave Radar and Wireless Communications (MIKON), 2012 19th International Conference on (Vol. 2, pp. 799-803). IEEE.
[18] Rzymowski, M., Nyka, K., & Kulas, Ł. (2014, June). Enhanced switched parasitic antenna with switched active monopoles for indoor positioning systems. In Microwaves, Radar, and Wireless Communication (MIKON), 2014 20th International Conference on (pp. 1-4). IEEE.
[19] Pozar, D. M., (2000) “Transmission Lines And Microwave Networks,” in Microwave and rf design of wireless systems, New York: John Wiley and Sons (WIE), pp. 50–53.
[20] Pozar, D. M., (2005) “Microwave Network Analysis,” in Microwave Engineering, 4th ed., New York: John Wiley and Sons (WIE), pp. 178–181.
[21] Kurokawa, K. (1965). Power waves and the scattering matrix. IEEE transactions on microwave theory and techniques, 13(2), 194-202.