مدل‌سازی چندهدفه زنجیره تأمین معکوس به روش استوار در شرایط عدم قطعیت تقاضا با بهره‌گیری از الگوریتم فرا ابتکاریNSGA-II در صنعت فولاد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی دانشگاه تهران

2 عضو هیئت علمی دانشگاه خاتم

3 پردیس البرز دانشگاه تهران، تهران، ایران

چکیده

در طراحی زنجیره تأمین استفاده از محصولات برگشتی و چرخه دوباره آن‌ها در شبکه تولید و مصرف در قالب لجستیک معکوسمطرح می‌شود.مدل پیشنهادی به بهینه سازی جریان مواد در شبکه زنجیره‌­تاٌمین، تعیین مقدار و مکان تسهیلات و برنامه‌ریزی حمل­‌ونقل در شرایط عدم قطعیت تقاضا می‌پردازد به گونه‌ای‌که: کل سود عملیاتی زنجیره حداکثر، اثرات نامساعد زیست محیطی حداقل و سطح خدمت‌دهی به مشتریان و تاٌمین کنندگان زنجیره حداکثر شود.برای مواجهه با عدم قطعیت مدل از برنامه ریزی استوار مبتنی بر سناریو و برای حل مدل با داده‌های واقعی در صنعت فولاد از الگوریتم فراابتکاری NSGA-II استفاده شده است.نتایج بدست آمده مدل از مجموعه داده‌های واقعی و اعتبارسنجی انجام شده نشان می‌دهد که مدل می‌تواند بصورت یکپارچه نسبت به بهینه سازی اهداف و تعیین تعداد و مکان تسهیلات لازم برای صنعت فولاد، کارایی لازم را به همراه داشته باشد. 

کلیدواژه‌ها


[1] Lee, D.H. & Dong, M. (2009). A heuristic approach to logistics network design for end-of-lease computer products recovery. Transportation Research E, 44, 455-474

[2] Chaabane, A., Ramudhin, A., & Paquet, M. (2012). Design of sustainable supply chains under the emission trading scheme. International Journal of Production Economics, 135(1), 37-49

[3] Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35(2), 637-649.

[4] Lasunon, P., Remsungnen, T., & Akararungruangkul, R. (2011). A stochastic tri-level programming model to minimize total cost in a supply chain planning with uncertainty demand. In Proceeding of 2nd international conference on logistics and transport, Queenstown, New Zealand,  693-701

[5] Boukherroub, T., Ruiz, A., Guinet, A., & Fondrevelle, J. (2015). An integrated approach for sustainable supply chain planning. Computers & Operations Research, 54, 180-194

[6] Talaei, M., Moghaddam, B. F., Pishvaee, M. S., Bozorgi-Amiri, A., & Gholamnejad, S. (2016). A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry. Journal of Cleaner Production, 113, 662-673

[7] Nenes, G., & Nikolaidis, Y. (2012). A multi-period model for managing used product returns. International Journal of Production Research, 50(5), 1360–1376

[8] Das, K., & Chowdhury, A. H. (2012). Designing a reverse logistics network for optimal collection, recovery and quality-based product-mix planning. International Journal of Production Economics, 135(1), 209–221

[9] Guo, S., Aydin, G., & Souza, G. C. (2014). Dismantle or remanufacture? European Journal of Operational Research, 233(3), 580–583.

[10] Niknejad, A., & Petrovic, D. (2014). Optimisation of integrated reverse logistics networks with different product recovery routes. European Journal of Operational Research, 238(1), 143-154.

[11] Santibanez-Gonzalez, E. D., & Diabat, A. (2016). Modeling logistics service providers in a non-cooperative supply chain. Applied Mathematical Modelling, 40, 6340-6358

[12] Azadeh, A., Raoofi, Z., & Zarrin, M. (2015). A multi-objective fuzzy linear programming model for optimization of natural gas supply chain through a greenhouse gas reduction approach. Journal of Natural Gas Science and Engineering, 26, 702-710

[13] Memari, A., Rahim, A. R. A., & Ahmad, R. B. (2015). An integrated production-distribution planning in green supply chain: a multi-objective evolutionary approach. Procedia Cirp, 26, 700-705

[14] El-Sayed, M., Afia, N., & El-Kharbotly, A. (2010). A stochastic model for forward–reverse logistics network design under risk. Computers & Industrial Engineering, 58(3), 423-431

[15] Ramudhin, A., Chaabane, A., & Parquet, A.M. (2010). On the design of sustainable green supply chains”, International Conference on Computers and Industrial Engineering,CIE, 979-984

[16] Sarrafha, K., Rahmati, S. H. A., Niaki, S. T. A., & Zaretalab, A. (2015). A bi-objective integrated procurement, production, and distribution problem of a multi-echelon supply chain network design: A new tuned MOEA. Computers & Operations Research, 54, 35-51

[17] Pishvaee, M. S., & Khalaf, M. F. (2016). Novel robust fuzzy mathematical programming methods. Applied Mathematical Modelling, 40(1), 407-418

[18] Feitó-Cespón, M., Sarache, W., Piedra-Jimenez, F., & Cespón-Castro, R. (2017). Redesign of a sustainable reverse supply chain under uncertainty: A case study. Journal of Cleaner Production, 151, 206-217.

[19] Rafie-Majd, Z., Pasandideh, S. H. R., & Naderi, B. (2018). Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm. Computers & Chemical Engineering, 109, 9-22

[20] Musavi, M., & Rayat, F. (2017). A Bi-Objective Green Truck Routing and Scheduling Problem in a Cross Dock with the Learning Effect. Iranian Journal of Operations Research, 8(1), 2-14

[21] Mogale, D. G., Kumar, M., Kumar, S. K., & Tiwari, M. K. (2018). Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network. Transportation Research Part E: Logistics and Transportation Review, 111, 40-69

[22] Dai, Z., Aqlan, F., Zheng, X., & Gao, K. (2018). A location-inventory supply chain network model using two heuristic algorithms for perishable products with fuzzy constraints. Computers & Industrial Engineering, 119, 338-352.

[23] Khodaparasti, S., Bruni, M. E., Beraldi, P., Maleki, H. R., & Jahedi, S. (2018). A multi-period location-allocation model for nursing home network planning under uncertainty. Operations Research for Health Care. https://doi.org/10.1016/j.orhc.2018.01.005

[24] Doolun, I. S., Ponnambalam, S. G., Subramanian, N., & Kanagaraj, G. (2018). Data driven hybrid evolutionary analytical approach for multi objective location allocation decisions: Automotive green supply chain empirical evidence. Computers & Operations Research. https://doi.org/10.1016/j.cor.2018.01.008