معرفی شاخص توانایی تابعی جدید(پروفایل) C^''' _p برای پروفایل خطی ساده با تلورانس نامتقارن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی صنایع، دانشگاه کوثر بجنورد، بجنورد، ایران

2 استادیار گروه مهندسی صنایع، دانشگاه کوثر بجنورد، بجنورد، ایران

چکیده

در بسیاری از شرایط، کیفیت یک محصول یا فرآیند به وسیله رابطه‌ای بین متغیر پاسخ و یک یا چند متغیر مستقل توصیف می‌شود که به این رابطه پروفایل گویند. پروفایل‌های خطی ساده یکی از انواع مختلف پروفایل‌ها بوده که در آن‌ها یک رابطه خطی بین یک متغیر پاسخ و یک متغیر مستقل وجود دارد. در این مقاله، شاخص‌ توانایی تابعی برای پروفایل خطی ساده با تلورانس نامتقارن معرفی می‌شود. عملکرد شاخص‌ تابعی ارائه شده با شاخص‌‌های موجود C_ppM^''' و C_pp^'' (Profile) با استفاده از مثال عددی و مطالعات شبیه‌سازی مورد بررسی قرار می‌گیرد. نتایج ارزیابی‌ها نشان دهنده این است که شاخص‌ ارائه شده نسبت به شاخص‌های موجود در بیان توانایی فرآیند بهتر عمل می‌کند. همچنین فواصل ‌اطمینان بر اساس سه روش بوت‌استرپ برای شاخص‌ پیشنهادی ارائه می‌شود و عملکرد آن‌ها از طریق مطالعات شبیه‌سازی ارزیابی می‌گردد. برای نشان دادن کاربرد شاخص‌ پیشنهادی، یک مطالعه موردی واقعی ارائه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Developing a new functional capability index C_p^''' (Profile) for a simple linear profile with asymmetric tolerance

نویسندگان [English]

  • Aylin Pakzad 1
  • Fahimeh Tanhaie 2
1 Assistant Professor, Department of Industrial Engineering, Kosar University of Bojnord, Bojnord, Iran.
2 Assistant Professor, Department of Industrial Engineering, Kosar University of Bojnord, Bojnord, Iran.
چکیده [English]

Abstract:  In some practical applications, the quality of a product or process is defined by a profile, which is a relationship between a response variable and one or more explanatory variables. Simple linear profiles (SLPs) are one of the various types of profiles in which the product or process quality is related to a simple linear function between a response and an explanatory variable. In this article, a functional capability index for a simple linear profile with asymmetric tolerance is introduced. The performance of the proposed index and existing ones (  and ) are studied using numerical examples and simulation studies in terms of mean absolute error (MAE), mean square error (MSE) and absolute percentage error (APE) metrics. The results show that the new index performs better than the two existing indices. Furthermore, confidence intervals for the proposed index are constructed using three bootstrap methods, and their performance is evaluated using simulation studies. A real-world case study is presented to demonstrate the application of the proposed index.
 

کلیدواژه‌ها [English]

  • Simple linear profile
  • Process incapability indices
  • Asymmetric tolerances
  • Functional approach
simple linear profile. Journal of Statistical Computation and Simulation, 92(1), 1–30.
[12]       Pakzad, A., & Basiri, E. (2022). A new incapability index for simple linear profile with asymmetric tolerances. Quality Engineering, 1–17. https://doi.org/10.1080/08982112.2022.2129025
[13]       Nemati Keshteli, R., Baradaran Kazemzadeh, R., Amiri, A., & Noorossana, R. (2014b). Functional process capability indices for circular profile. Quality and Reliability Engineering International, 30(5), 633–644.
[14]       Wang, F. K. (2015). Measuring the process yield for circular profiles. Quality and Reliability Engineering International, 31(4),  579–588.
[15]       Guevara, R. D., Vargas, J. A., & Castagliola, P. (2016). Evaluation of process capability in non-linear profiles using Hausdorff distance. Quality Technology & Quantitative Management, 13(1), 1–15.
[16]       Rezaye Abbasi Charkhi, M., Aminnayeri, M., & Amiri, A. (2016). Process Capability Indices for Logistic Regression Profile. Quality and Reliability Engineering International, 32(5), 1655–1661.
[17]       Alevizakos, V., Koukouvinos, C., & Castagliola, P. (2018). Process capability index for Poisson regression profile based on the Spmk index. Quality Engineering, 1–9. https://doi.org/https://doi.org/10.1080/08982112.2018.1523426
[18]       Alevizakos, V., Koukouvinos, C., & Lappa, A. (2019). Comparative study of the Cp and Spmk indices for logistic regression profile using different link functions. Quality Engineering, 31(3), 453–462.
[19]       Alevizakos, V., & Koukouvinos, C. (2020). Evaluation of process capability in gamma regression profiles. Communications in Statistics: Simulation and Computation, 1–16. https://doi.org/10.1080/03610918.2020.1758941
[20]       Guevara, R. D., & Alejandra López, T. (2021). Process capability vector for multivariate nonlinear profiles. Journal of Statistical Computation and Simulation, 1–30. https://doi.org/10.1080/00949655.2021.1991926
[21]       Guevara G, R. D., & Alejandra López, T. (2022). Process capability vector for multivariate nonlinear profiles. Journal of Statistical Computation and Simulation, 92(6), 1292–1321.
[22]       Abbasi Ganji, Z., & Sadeghpour Gildeh, B. (2016). A class of process capability indices for asymmetric tolerances. Quality Engineering, 28(4), 441–454.
[23]       Zhang, N. F., Stenback, G. A., & Wardrop, D. M. (1990). Interval estimation of process capability index Cpk. Communications in Statistics: Theory and Methods, 19(12), 4455-4470.
[24]       Chou, Y. M., Owen, D. B., & Borrego, A. S. A. (1990). Lower confidence limits on process capability indices, Journal of Quality Technology, 22(3), 223-229.
[25]       Kushler, R. H., & Hurley, P. (1992). Confidence bounds for capability indices, Journal of Quality Technology, 24(4), 188-195.
[26]       Frankllin, L. A., & Wasserman, G. S. (1991). Bootstrap confidence interval estimation of Cpk: an introduction. Communications in Statistics - Simulation and Computation, 20(1), 231-242.
[27]       Balamurali, S., & Kalyanasundaram, M. (2002). Bootstrap lower confidence limits for the process capability indices Cp, Cpk and Cpm. International Journal of Quality and Reliability Management, 19(8), 1088-1097.
[28]       Jafarian, N.S., Raissi, S. & Amiri, A. (2013). Bootstrap confidence intervals for AR(1) autocorrelated process capability indices, Journal of Quality Engineering and Management, 2(4), 237-249. (In Persian)
[29]       Jafarian, N.S., & Raissi, S. (2015). Interval estimation of Cpk for autocorrelated data in the presence of measurement error, Journal of Quality Engineering and Management, 4(3), 173-183. (In Persian)
 [30]      Jafarian N, S., Raissi, S., & Amiri, A. (2016). Performance comparison of bootstrap techniques in interval estimation of process capability indices in AR(1) processes. International Journal of Industrial Engineering & Production Management, 27(3), 419-431. (In Persian)
 [31]     R‌a‌i‌s‌s‌i, S., J‌a‌f‌a‌r‌i‌a‌n N‌a‌m‌i‌n, S., & A‌m‌i‌r‌i, A. (2017). I‌nterval E‌stimation of Cp‌m & Cp‌m‌k in A‌R(1) P‌rocess Using Circular B‌lock B‌ootstrap M‌ethod. Sharif Journal of Industrial Engineering & Management32.1(2.2), 89-98. (In Persian)
[32]       Kutner, M., C. J. Nachtsheim, J. Neter, & Li, W. (1996). Applied Linear Regression Models (Fifth). USA: McGraw-Hill, Boston.
[33]       Kotz, S., & Johnson, N. L. (1993). Process Capability Indices. In Chapman and Hall. Chapman and Hall.
[34]       Chen, C. C., Lai, C. M., & Nien, H. Y. (2010). Measuring process capability index Cpm with fuzzy data. Quality and Quantity, 44(3), 529–535.
[35]       Kang, L., & Albin, S. L. (2000). On-line Monitoring When the Process Yields a Linear Profile. Journal of Quality Technology, 32(4), 418–426.
[36]       Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics.
[37]         Amiri, A., Zand, A., & Soudbakhsh, D. (2011). Monitoring Simple Linear Profiles in the Leather Industry (A Case Study ). International Conference on Industrial Engineering and Operations Management, 891–897