شبیه‌سازی اثر شلاقی چندمرحله‌ای در زنجیره‌ی تأمین چندمحصولی و چندسطحی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدیریت صنعتی، گروه مدیریت صنعتی، دانشگاه آزاد اسلامی واحد فیروزکوه،فیروزکوه، ایران

2 گروه مدیریت صنعتی، واحد فیروزکوه، دانشگاه آزاد اسلامی، فیروزکوه، ایران

چکیده

برای بهینه بودن زنجیره تأمین باید نظام منسجم و پویایی  وجود داشته باشد. شناخت فرایندهای تأمین قطعات، طراحی، مطالعات مربوط و امثال آن، و به کارگیری روش‌­های کارا برای مدیریت آن‌ها می‌­توانند اثربخش باشد. هدف این تحقیق بررسی تشدید اثر شلاقی، یعنی تغییرات تقاضای مشتری در زنجیره­‌ی تأمین چندمحصولی و چندسطحی است. در این مقاله مدل‌های موجودی، ارتباطی و مشارکتی برای محاسبه اثر شلاقی طراحی گردیدند. برای شبیه‌­سازی اثر شلاقی این مدل‌ها از برنامه متلب ANFIS برای ورود اطلاعات و محاسبه اثر شلاقی استفاده شده است. نتایج نشان می­‌دهند که برای هر دو عامل تولیدکننده و توزیع کننده سطح اثر شلاقی برای دو محصول موزد مطالعه به میزان قابل توجهی کاهش یافته است. نتیجه­‌ی بخش تطبیق مشارکت­‌های واحد زنجیره تأمین در طول کل زنجیره تأمین نشان می‌­دهد که لزومی ندارد اندازه‌­ی واحدهای ارسالی محصول به توزیع کنندگان، در صورت کاهش موجودی آن‌ها تغییر پیدا کند .

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of a Multi-Stage Whip Effect in a Multi-Product and Multi-Level Supply Chain 

نویسندگان [English]

  • Mohammad Mahdi Movahedi 1
  • Sayed Ahmad Shayan Nia 2
  • Hamed Yousefnejad 2
1 Department of Industrial Management, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran,  
2 Department of Industrial Management, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran,  
چکیده [English]

The purpose and background of this research is to investigate the intensification of changes in demand from the customer to the manufacturer. A beverage factory with two products whose production reaches distributors in different ways was studied. Inventory, communication and participatory models were designed to calculate the whipping effect. Communication and participatory models were also written with the ANFIS MATLAB program to enter information and calculate the whipping effect. For the producer factor, the level of the whip effect has decreased by an average of 22.31%, which is 33.33% for product A and 1.97% for product B. The results shown in the study show an appropriate reduction in the level of the whip effect. For distributors, there is an average decrease of 92.17%. For the producer factor, the level of the whip effect has decreased by an average of 22.31%. 
 

کلیدواژه‌ها [English]

  • whip effect
  • multi-product supply chains
  • multi-level and multi-stage supply chains
[1] Carbonneau, R., Laframboise, K., & Vahidov, R. (2008). Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research, 184(3), 1140-1154.
[2] Dejonckheere, J., Disney, S. M., Lambrecht, M. R., & Towill, D. R. (2002). Transfer function analysis of forecasting induced bullwhip in supply chains. International journal of production economics, 78(2), 133-144.
[3] Disney, S. M., Towill, D. R., & Van de Velde, W. (2004). Variance amplification and the golden ratio in production and inventory control. International Journal of Production Economics, 90(3), 295-309.
[4] Efendigil, T. (2014). Modeling Product Returns in a Closed-Loop Supply Chain Under Uncertainties: A Neuro Fuzzy Approach. Journal of Multiple-Valued Logic & Soft Computing, 23.
[5] Hofmann, E. (2017). Big data and supply chain decisions: the impact of volume, variety and velocity properties on the bullwhip effect. International Journal of Production Research, 55(17), 5108-5126.
[6] Keshari, A., Mishra, N., Shukla, N., McGuire, S., & Khorana, S. (2018). Multiple order-up-to policy for mitigating bullwhip effect in supply chain network. Annals of Operations Research, 269(1-2), 361-386.
[7].Li, G., Yu, G., Wang, S., & Yan, H. (2017). Bullwhip and anti-bullwhip effects in a supply chain. International Journal of Production Research, 55(18), 5423-5434.
[8] Sirikasemsuk, K. Luong H. T. (2017). Measure of bullwhip effect in supply chains with first-order bivariate vector auto regression time-series demand model, Computers & Operations Research 78, 59-79.
[9] Makui, A., & Madadi, A. (2007). The bullwhip effect and Lyapunov exponent. Applied Mathematics and Computation, 189(1), 35-40.
[10] Ouyang, Y., & Li, X. (2010). The bullwhip effect in supply chain networks. European Journal of Operational Research, 201(3), 799-810.
[11] Nepal, B., Murat, A., & Chinnam, R. B. (2012). The bullwhip effect in capacitated supply chains with consideration for product life-cycle aspects. International Journal of Production Economics, 136(2), 318-331.
[12] Tanweer, A., Li, Y. Z., Duan, G., & Song, J. Y. (2014). An optimization model for mitigating bullwhip-effect in a two-echelon supply chain. Procedia-Social and Behavioral Sciences, 138, 289-297.
[13] Sadeghi, A. (2015). Providing a measure for bullwhip effect in a two-product supply chain with exponential smoothing forecasts. International Journal of Production Economics, 169, 44-54.
[14] Trapero, J. R., & Pedregal, D. J. (2016). A novel time-varying bullwhip effect metric: An application to promotional sales. International Journal of Production Economics, 182, 465-471.
[15] Zhao, Y., Cao, Y., Li, H., Wang, S., Liu, Y., Li, Y., & Zhang, Y. (2018). Bullwhip effect mitigation of green supply chain optimization in electronics industry. Journal of cleaner production n, 180, 888-912.
[16] Narayanan, A., Mackelprang, A., & Malhotra, M. (2019, July). Effect of Capacity and Flexibility Constraints on Bullwhip Effect in Supply Chains. In Academy of Management Proceedings (Vol. 2019, No. 1, p. 17864). Briarcliff Manor, NY 10510: Academy of Management.
[17] Martinez‐Moyano, I. J., & Richardson, G. P. (2013). Best practices in system dynamics modeling. System Dynamics Review, 29(2), 102-123.
[18] Wang, N., Ma, Y., He, Z., Che, A., Hung, Y. and Xu, J. (2014). The impact of consumer price forecasting behavior on the bullwhip effect. International Journal of Production Research,52(22): 6642-6663.
[19] Wangphanich, P., Kara, S., & Kayis, B. (2010). Analysis of the bullwhip effect in multi-product, multi-stage supply chain systems–a simulation approach. International journal of production Research, 48(15), 4501-4517.