بهینه سازی فرآیند حذف رنگزای اسیدی آبی-74 از پساب نساجی با نانوزئولیت اصلاح شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی نساجی-دانشکده فنی-دانشگاه آزاد اسلامی واحد علوم و تحقیقات-تهران-ایران

2 گروه طراحی لباس-دانشکده هنر-دانشگاه آزاد اسلامیی واحد تهران جنوب-تهران-ایران

3 گروه فیزیک-دانشگاه الزهرا-تهران-ایران

چکیده

در این پژوهش، برای تعیین شرایط بهینه حذف رنگزای اسیدی آبی-74 از جاذب نانوزئولیت در ابعاد کوچک‌تر از 100 نانومتر، از طراحی آزمایش‌هایی به روش سطح پاسخ (RSM) مدل باکس بنکن (BBD) توسط نسخه 19 نرم‌افزار Mini Tab استفاده شد. پارامترهای تاثیرگذار در فرآیند جدب از قبیل pH، دما، غلظت رنگزا، دور همزن و مقدار جاذب، در سیستم تحیل آماری ANOVA برای مطالعه‌ی فرآیند جذب رنگزا، مورد بررسی قرار گرفتند. نتایج این تحقیق نشان داد که کاهش pH، دما و غلظت رنگزا، تاثیر قابل توجهی در بهبود فرآیند جذب دارد.برای حذف آلاینده‌ها توسط جاذب نانوزئولیت، سطح نانوزئولیت با استفاده از سطح فعال تویین- 60 اصلاح شد.برای اطمینان از انجام اصلاح سطح و مطالعه ساختار،آزمون‌های BET و DLS انجام شد. در نتیجه با افزودن سطح فعال با غلظت 15% به نانوزئولیت به‌دلیل اصلاح سطح، میزان جذب رنگزا افزایش و فرآیند بهبود یافت. همچنین مدل سینتیکی و ایزوترم فرآیند جذب بررسی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of the process of removal of acidic blue dye -74 from textile wastewater with modified nanozeolite

نویسندگان [English]

  • Laila Qhanavati 1
  • Amir Houshang Hekmati 2
  • Abosaeed Rashidi 1
  • Azizollah Shafiekhani 3
1 PhD Student, Islamic Azad University, Science and Research Branch,
2 , Associate Professor, Islamic Azad University, South Tehran Branch
3 Professor, Public University in Tehran, Alzahra University
چکیده [English]

In this study, the design of the Response Surface Method (RSM) of the Box-Behnken model (BBD) was used by MiniTab-19 software to determine the optimal conditions for the removal of AB-74 dye by nanozeolite in dimensions smaller than 100 nm. Effective parameters such as pH, temperature, dye concentration, stirrer speed and adsorbent dose were investigated in an ANOVA statistical analysis system to study the dye adsorption process. The results showed that with decreasing pH and temperature and concentration, the dye had the highest dye absorption. To remove anionic contaminants and increase the negative ion exchange capacity by nanozeolite, the nanozeolite surface was modified using tween-60 surfactant. BET and DLS tests were performed to ensure the level of correction and study of structure features. Experimental results showed that by adding the tween-60 surfactant with a concentration of 15% to the nanozeolite due to surface modification, the amount of dye adsorption increased. The kinetic model and isotherm model of the adsorption process were also studied and the results showed that the reaction kinetics follows the pseudo-second-order model and adsorption process for nanozeolite and modified nanozeolite follows the Freundlich model.

کلیدواژه‌ها [English]

  • Optimization of the dye adsorption process
  • Wastewater
  • nanozeolite. Acid blue dye-74
  • Surfactant tween-60
  • Lipnizki, F., Thuvander, J., & Rudolph, G. (2020). Membrane processes and applications for biorefineries. In Current Trends and Future Developments on (Bio-) Membranes (pp. 283-301). Elsevier.
  • Wang, R., Liu, S., Wang, L., Li, M., & Gao, C. (2019). Understanding of nanophase separation and hydrophilic morphology in Nafion and SPEEK membranes: A combined experimental and theoretical studies. Nanomaterials, 9(6), 869.
  • Mmbaga, J. N. (2018). Synthesis & characterization of polymer-layered silicate nanocomposites and their evaluation as sorbents for lead and cadmium in water pollution remediation (Doctoral dissertation, University of Nairobi).
  • Vijayavenkataraman, S. (2020). Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta biomaterialia, 106, 54-69.
  • Koshy, N., & Singh, D. N. (2016). Fly ash zeolites for water treatment applications. Journal of Environmental Chemical Engineering, 4(2), 1460-1472.
  • Zhang, P., Ouyang, S., Li, P., Huang, Y., & Frost, R. L. (2019). Enhanced removal of ionic dyes by hierarchical organic three-dimensional layered double hydroxide prepared via soft-template synthesis with mechanism study. Chemical Engineering Journal, 360, 1137-1149.
  • Pham, T. D., Pham, T. T., Phan, M. N., Ngo, T. M. V., & Vu, C. M. (2020). Adsorption characteristics of anionic surfactant onto laterite soil with differently charged surfaces and application for cationic dye removal. Journal of Molecular Liquids, 301, 112456.
  • [8] Hashemi, M. S. H., Eslami, F., & Karimzadeh, R. (2019). Organic contaminants removal from industrial wastewater by CTAB treated synthetic zeolite Y. Journal of environmental management, 233, 785-792.
  • Tasić, Ž. Z., Bogdanović, G. D., & Antonijević, M. M. (2019). Application of natural zeolite in wastewater treatment: A review. Journal of Mining and Metallurgy A: Mining, 55(1), 67-79.
  • Atkovska, K., Lisichkov, K., Ruseska, G., Dimitrov, A. T., & Grozdanov, A. (2018). REMOVAL OF HEAVY METAL IONS FROM WASTEWATER USING CONVENTIONAL AND NANOSORBENTS: A REVIEW. Journal of Chemical Technology & Metallurgy, 53(2).
  • Yuna, Z. (2016). Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environmental Engineering Science, 33(7), 443-454.
  • Bahi, A., Shao, J., Mohseni, M., & Ko, F. K. (2017). Membranes based on electrospun lignin-zeolite composite nanofibers. Separation and Purification Technology, 187, 207-213.
  • Nassrullah, H., Makanjuola, O., Janajreh, I., AlMarzooqi, F. A., & Hashaikeh, R. (2020). Incorporation of nanosized LTL zeolites in dual-layered PVDF-HFP/cellulose membrane for enhanced membrane distillation performance. Journal of Membrane Science, 611, 118298.
  • Renew, J. E. (2017). Immobilization of heavy metals in solidified/stabilized co-disposed bituminous coal fly ash and concentrated flue gas desulfurization wastewater (Doctoral dissertation, Georgia Institute of Technology).
  • Ebrahimi, R., Maleki, A., Shahmoradi, B., Rezaee, R., Daraei, H., Safari, M., & Harkaranahalli Puttaiah, S. (2018). Organic dye removal from aqueous media by using acid modified Clinoptilolite. Journal of Advances in Environmental Health Research, 6(2), 118-127.
  • Mirzaei, H., Almasian, M. R., Mousavian, S. M. A., & Kalal, H. S. (2019). Plasma modification of a natural zeolite to improve its adsorption capacity of strontium ions from water samples. International Journal of Environmental Science and Technology, 16(10), 6157-6166.
  • Akbari, A., Sabouri, Z., Hosseini, H. A., Hashemzadeh, A., Khatami, M., & Darroudi, M. (2020). Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorganic Chemistry Communications, 115, 107867.
  • Goscianska, J., Ptaszkowska-Koniarz, M., Frankowski, M., Franus, M., Panek, R., & Franus, W. (2018). Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash. Journal of colloid and interface science, 513, 72-81.
  • Mirbaloochzehi, M. R., Rezvani, A., Samimi, A., & Shayesteh, M. (2020). Application of a Novel Surfactant-Modified Natural Nano-Zeolite for Removal of Heavy Metals from Drinking Water. Advanced Journal of Chemistry-Section A, 3(5), 612-620.
  • Mouni, L., Belkhiri, L., Bollinger, J. C., Bouzaza, A., Assadi, A., Tirri, A., ... & Remini, H. (2018). Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Applied Clay Science, 153, 38-45.
  • Neag, E., Török, A. I., Tanaselia, C., Aschilean, I., & Senila, M. (2020). Kinetics and equilibrium studies for the removal of Mn and Fe from binary metal solution systems using a Romanian thermally activated natural zeolite. Water, 12(6), 1614.
  • Ghanei, M., Rashidi, A., Tayebi, H. A., & Yazdanshenas, M. E. (2018). Removal of acid blue 25 from aqueous media by magnetic-SBA-15/CPAA super adsorbent: adsorption isotherm, kinetic, and thermodynamic studies. Journal of Chemical & Engineering Data, 63(9), 3592-3605.
  • Liu, Y., Chen, R., Yuan, D., Liu, Z., Meng, M., Wang, Y. & Guo, W. (2015). Thermal-responsive ion-imprinted polymer based on magnetic mesoporous silica SBA-15 for selective removal of Sr (II) from aqueous solution. Colloid and Polymer Science, 293(1), 109-123.
  • Fiorilli, S., Rivoira, L., Calì, G., Appendini, M., Bruzzoniti, M. C., Coïsson, M., & Onida, B. (2017). Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water. Applied Surface Science, 411, 457-465.
  • Huang, T., Yan, M., He, K., Huang, Z., Zeng, G., Chen, A., & Chen, G. (2019). Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. Journal of colloid and interface science, 543, 43-51.
  • Van Hoa, N., Khong, T. T., Quyen, T. T. H., & Trung, T. S. (2016). One-step facile synthesis of mesoporous graphene/Fe3O4/chitosan nanocomposite and its adsorption capacity for a textile dye. Journal of Water Process Engineering, 9, 170-178.
  • Salem, M. A., Elsharkawy, R. G., & Hablas, M. F. (2016). Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium, and thermodynamic studies. European polymer journal, 75, 577-590.
  • Akazdam, S., Chafi, M., Yassine, W., Sebbahi, L., Gourich, B., & Barka, N. (2017). Decolourization of cationic and anionic dyes from aqueous solution by adsorption on NaOH treated eggshells: batch and fixed bed column study using response surface methodology. J Mater Env. Sci, 8, 784-800.
  • Suflet, D. M., Popescu, I., & Pelin, I. M. (2017). Preparation and adsorption studies of phosphorylated cellulose microspheres. Cellulose Chemistry and Technology, 51(1-2), 23-34.
  • Malakootian, M., Hossaini, H., Asadipour, A., & Daneshkhah, M. (2018). Preparation and characterization of modified sepiolite for the removal of Acid green 20 from aqueous solutions: isotherm, kinetic and process optimization. Applied Water Science, 8(6), 1-12.
  • Javadian, H., Ghorbani, F., Tayebi, H. A., & Asl, S. H. (2015). Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arabian Journal of Chemistry, 8(6), 837-84.