طراحی مدل توسعه‌ی معماری پلتفرمِ محصول با رویکرد چند هدفه شامل DFC و DFV و DFSC، مطالعه‌ی موردی: سیستم آنتن آرایه فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه مدیریت صنعتی ، دانشکده مدیریت و اقتصاد، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. استاد، گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه صنعتی مالک اشتر، ایران.

3 استاد، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

4 استادیار دانشکده مهندسی صنایع دانشگاه گلپایگان

چکیده

چکیده: در این تحقیق از روش طراحی برای تنوع­پذیری (DFV) و دو شاخص تنوع نسلی (GVI) و شاخص اتصال (CI) برای اندازه­گیری یک معماری محصول استفاده می­شود و با استفاده از تابع ارتقاء کیفیت (QFD) و ماتریس ساختار طراحی (DSM)، شاخص­های مذکور شناسایی و رتبه­بندی می­شوند. همچنین رویکرد DFV همزمان با مقوله‌های طراحی برای هزینه (DFC) و طراحی برای زنجیره تامین (DFSC) مدلسازی می­شود و یک مدل ریاضی کاربردی جهت توسعه­ی معماری پلتفرم محصول حاصل می­گردد که به دنبال تنوع­پذیری محصول و کاهش هزینه­ها و مدیریت فرایند زنجیره تامین است؛ چرا که معماری پلتفرمِ قوی یک مزیت رقابتی برای شرکت­ها محسوب می­شود. مطالعه­ی موردی، سیستم آنتن آرایه فازی است که با استفاده از تکنیک LP متریک و نرم‌افزار گمز به حل مسئله پرداخته می­شود. پس از اجرای مدل، اعتبارسنجی آن انجام شده و با در نظر گرفتن سه هدف شامل هزینه کل و امتیاز ارزیابی (شایستگی) تأمین‌کنندگان و جابه‌جایی‌پذیری (تنوع‌پذیری) و هفت پارامتر اصلی مدل، تحلیل حساسیت و دیگر مقایسات و نتایج ارایه می­گردد که روابط بین اهداف و اثرگذاری و اثرپذیری اهداف و پارامترهای مدل از همدیگر را بررسی و تحلیل می­نماید. در مورد مقایسه­ی اهداف با همدیگر، یافته­ها رابطه­ی معکوس هدف هزینه کل با اهداف تنوع‌پذیری و امتیاز ارزیابی و رابطه‌ی مستقیم اهداف تنوع‌پذیری و امتیاز ارزیابی را نشان می­دهد. همچنین نتایج تحلیل حساسیت نشانگر اثر‌پذیری بالاتر هدف جابه‌جایی‌پذیری از پارامترهای مورد بررسی بود و امتیاز ارزیابی تأمین‌کنندگان و هزینه کل در رتبه­‌های بعدی قرار گرفتند.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a product platform architecture development model with a multi-objective approach including DFC, DFV and DFSC, Case study: Phased array antenna system

نویسندگان [English]

  • masoud merati 1
  • Mahdi karbasian 2
  • abbas toloei 3
  • hassan haleh 4
1 Department of Industrial Management, Faculty of Management and Economics, Research Sciences Branch, Islamic Azad University, Tehran, Iran
2 Professor, Department of Industrial Management, Faculty of Management and Economics, science and research Branch, Islamic Azad University, Tehran, Iran Professor, Department of Industrial Engineering, Malek Ashtar University of Technology, Esfahan, Iran.
3 Professor, Department of Industrial Management, Faculty of Management and Economics, Research Sciences Unit, Islamic Azad University, Tehran
4 Assistant Professor, Department of Industrial Management, Faculty of Management and Economics, Research Sciences Unit, Islamic Azad University,
چکیده [English]

Abstract: Since the development of a strong platform architecture is considered a competitive advantage for companies and is effective in improving the future generations of the product, therefore there is a need for a kind of diversified product design that simultaneously manages the costs and supply chain process and thus help to develop the architecture of the product platform. In this research, the design for vareity (DFV) method and two generational variety index (GVI) and coupling index (CI) are used to measure a product architecture and by using the quality improvement function (QFD) and the design structure matrix ( DSM), design indicators for variety are identified and ranked. Also, the DFV approach is simultaneously modeled with the categories of design for cost (DFC) and design for supply chain (DFSC) and a mathematical model applied to the development of the product platform architecture is obtained, which seeks to diversify the product and reduce costs and Supply chain process management. The case study of the current research is the phased array antenna system, in which the problem is solved using one of the new optimization techniques (LP metric) and GAMS software. After the implementation of the model, its validation was carried out and considering three objectives including the total cost and the evaluation score (competence) of the suppliers and the objective of variety and the seven main parameters of the model, sensitivity analysis and other comparisons and results. A review is provided. Regarding the comparison of the goals with each other, the findings show the inverse relationship of the total cost goal with the variety and the evaluation score goals and the direct relationship between the two variety and the evaluation score goals. Also, the results of the sensitivity analysis showed the higher effectiveness of the goal of variety among the investigated parameters, and the evaluation score (competence) of suppliers and the total cost were ranked next.

کلیدواژه‌ها [English]

  • Product Platform
  • Design for Vareity (DFV)
  • Design for Cost (DFC)
  • Design for Supply Chain (DFSC)
  • Phased array antenna system
Itani, Anas and Ahmad, Rafiq and Al-Hussein, Mohamed. (2019). A Collaborative Scheme for DFX Techniques in Concurrent Engineering Mitigated with Total Design Activity Model, International Conference on Modular and Offsite Construction (MOC) Summit Proceedings, May 2019, Banff, Canada
Sassanelli, C and Pezzotta, G and Pirola, F and Terzi, S and Rossi, M. (2016). Design for Product Service Supportability (DfPSS) approach: a state of the art to foster Product Service System (PSS) design. In Product-Service Systems across Life Cycle, 2016. Elsevier.
Jiao, Jianxin and Zhang, Lianfeng and Pokharel, Shaligram. (2007). Process Platform Planning for Variety Coordination From Design to Production in Mass Customization Manufacturing, IEEE Transactions on Engineering Management, 54(1)
Meireles Carneiro, Tomas de. (2020). The articulation of advanced tools for product development, A thesis presented for the degree of Master in Mechanical Engineering, Mechanical Engineering Department Faculty of Engineering of the University of Porto Porto, Portugal
Shojaeefarda, M and Khalkhalib, A and Tavakoli Lahijanic, A. (2017). Using Design For Variety and Axiomatic Design To Architect Automotive Underbody, International journal of advanced production and industrial engineering, 2 (2)
Kwansuk, Oh and Jong Wook, Lim and Seongwon, Cho and Junyeol, Ryu and Yoo S., Hong. (2019). A Framework for Development Architecture for Modular Products: Cross-Domain Variety Management Perspective, Proceedings of the Design Society International Conference on Engineering Design, ICED19 5-8 August 2019, Delft, The Netherlands
Lamothe, J and Hadj-Hamou, K and Aldanondo, M. (2018). An optimization model for selecting a product family and designing its supply chain, Journal of Operational Research,169 (3)
Amid, A and Ghodsypour, S.H. and O’Brien, C. (2006). Fuzzy multiobjective linear model for supplier selection in a supply chain, International Journal of Production Economics, 104
Vinay Ashokbhai, Parikh. (2020). Development of Supply Chain Model For Improved Productivity in Capital and Industrial Goods Manufacturing Industry, A PhD Synopsis  Submitted to Gujarat Technological Universityfor the Degree of  Doctor of Philosophy
Holtta-Otto, Katja. (2005). Modular Product Platform Design, Doctoral Dissertation, Helsinki University of Technology Department of Mechanical Engineering Machine Design
Dambietz, F. M., Greve, E., Krause, D. (2021). Simulation-Based Performance Analysis for Future Robust Modular Product Architectures, in Proceedings of the International Conference on Engineering Design (ICED21), Gothenburg, Sweden, August 2021
Landahl, J. and Johannesson, H. (2018). Product Variety And Variety In Production, International Design Conference - Design 2018
Rennpferdt, Christoph and Greve, Erik and Krause, Dieter. (2021). Variety-driven design to reduce complexity costs of a tire curing press family, 31st CIRP Design Conference 2021, Hamburg University of Technology, Institute of Product Development and Mechanical Engineering Design, Denickestrasse 17, 21073 Hamburg, Germany.
Kipp, T and Krause, D. (2008). Design For Variety – Efficient Support For Design Engineers, International Design Conference - Design 2008, Dubrovnik – Croatia
Boer, Henrike and Boer, Harry. (2018). Design-for-variety and operational performance The mediating role of internal, supplier and customer integration, Journal of Manufacturing Technology Management.
Martin, M.V. and K.J.M.E.T. Ishii. (1999). Design for variety: a methodology for developing product platform architectures, PhD thesis, Stanford University
Moubachir, Y and Bouami, D. (2015). A new approach for the transition between QFD phases. Procedia Cirp, 26, 82-86.
Martin, M.V. and K.J.M.E.T. Ishii (2000). Design for variety: a methodology for developing product platform architectures, Proceedings of DETC2000ASME Design Engineering Technical Conferences September 10 - 13, 2000, Baltimore, MD
Liu, A and Hu, H and Zhang, X and Lei, D. (2017). Novel two-phase approach for process optimization of customer collaborative design based on fuzzy-QFD and DSM. IEEE Transactions on Engineering Management, 64(2)
karbasian, M and Mohebbi, B and khayambashi, B and cheshmberah, M and Morady. G, M. (2015).  Maximum Maintainability of Complex Systems via Modulation Based on DSM and Module Layout Case Study: Laser Range finder, International Journal of Industrial Engineering & Production Research, 26(4)
Rubio-Maya, Olivier and Guarin-Grisale, Alvaro and Carrizosa-Isaza, Pablo. (2014). Aplicaction of the Methodology for the Design Variety (DFV) in the Development of a Plataform of Productos, DYNA, 89(3)
Veenstra, Vanessa S and Halman, Johannes I. M. and Voordijk, Johannes T. (2006). A methodology for developing product platforms in the specific setting of the housebuilding industry, Res Eng Design
Xiaochuan, Chen and Jianguo, Yang., Beizhi, Li. (2004). Methodology and Technology of Design For Cost (DFC), The 5th World Congress on Intelligent Control and Automation, (WCICA'04) June 14-18, 2004, Hangzhou, China
Moroson, Bogdan. (2022). Design For Excellence (DFX). NeuronicWorks Inc, Handbook of North York, Canada
Brian Morrison, B. (2016). Design for Excellence (DFX) Driving Product Optimization Through Early Stage Supplier Engagement, manufacturing partner to innovators
Hou, Shixuan and Gao, Jie and Wang, Chun. (2021). Design for mass customisation, design for manufacturing, and design for supply chain: A review of the literature, The institution of Engineering and Technology, 4(1).
Sharifi, H and Ismail, H. S. and Reid, I. (2006). Achieving agility in supply chain through simultaneous “design of” and “design for” supply chain, Journal of Manufacturing Technology Management, 17(8).
Sohailifar, Mohammad Reza and Sadeghzadeh, Ramadan Ali (2016). Phased Array Antennas, Tehran, Student Technical Publications, first edition (in persian)
Hauser, J. R. and D. Clausing. (1988). “The House of Quality”, Harvard Business Review, 66 (3)
Asgharpour, M. J., (1998). Multiple Criteria Decision Making. Tehran, Tehran University Press.
Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. New York: Wiley.