ارائه روشی مبتنی بر مدل PDS و تکنیک AHP برای محاسبه و تحلیل قابلیت اطمینان با در نظر گرفتن شکست علت مشترک برای اجزاء غیر یکسان (مطالعهی موردی خروجی سیستم تثبیت موقعیت دینامیکی یک شناور)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی صنایع، فنی و مهندسی، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 مهندسی صنایع، فنی و مهندسی، دانشگاه پیام نور واحد نور، نور، ایران

3 مهندسی دریا، فنی و مهندسی، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

قابلیت اطمینان و ایمنی هر سیستم مهمترین مشخصه کیفی یک سیستم میباشد. این مشخصه کیفی در سیستمهایی که کارکرد آنها تحت استرسهای گوناگون مانند: دمای بالا، سرعت بالا، فشار زیاد و ... میباشد از اهمیت ویژهای برخوردار است. نکته قابل توجهی که در محاسبه قابلیت اطمینان و ایمنی سیستمها اغلب مورد توجه قرار نمیگیرد وجود وابستگی میان زیر سیستمها با یکدیگر میباشد، که این وابستگی باعث بوجود آمدن شکستهای متفاوتی در سیستم میشود، یکی از مهمترین این شکستها، شکست علت مشترک میباشد. که در این نوع شکستها چند زیر سیستم یا تمامی زیر سیستمها همزمان یا در یک بازه زمانی کوتاه با توجه به یک علت مشترک دچار شکست میشوند. در نظر نگرفتن شکستهای علت مشترک در محاسبه قابلیت اطمینان سیستمها باعث برآورد خوش بینانه نرخ قابلیت اطمینان سیستم و در نتیجه باعث اعتماد بیش از حد به سیستم میشود. در این مقاله ابتدا به کمک تکنیکهای تفکیک ساختار محصول) PBS (، نمودار بلوکی جریان عملکرد) FFBD ( به شناسایی و سپس به کمک نمودار بلوکی قابلیت اطمینان) RBD ( به محاسبه و تخصیص قابلیت اطمینان خروجی یک سیستم تثبیت موقعیت دینامیکی که شامل تراسترهای هیدرولیکی و الکتریکی برای حرکات رول، سوج، سووی، یاو و هیو میباشد، پرداخته خواهد شد. در محاسبه قابلیت اطمینان سیستم مذکور به کمک قوانین احتمال شکستهای آبشاری و به کمک مدل فاکتور بتا و روش PDS شکستهای علت مشترک زیر سیستمهای مختلف در نظر گرفته شد.

کلیدواژه‌ها


عنوان مقاله [English]

Presenting a method based on PDS model and AHP technique for calculating and analyzing reliability considering the common cause failure for non-uniform components (Case study of the output of the dynamic position stabilization system of a vessel)

نویسندگان [English]

  • Ali Eghbalibabadi 1
  • Mahdi Karbasian 1
  • Fatemeh Hassani 2
  • Sajad Ardashiri 3
1 Industrial Engineering, Technical and Engineering, Malek Ashtar University of Technology, Tehran, Iran
2 Industrial Engineering, Technical and Engineering, Payame Noor University, Noor Branch, Noor, Iran
3 Marine Engineering, Engineering, Malek Ashtar University of Technology, Tehran, Iran
چکیده [English]

Reliability and safety of any system is the most important quality characteristic of a system. This qualitative characteristic is of special importance in systems whose operation is under various stresses such as: high temperature, high speed, high pressure, etc. A noteworthy point that is often not taken into account in calculating the reliability and safety of systems is the existence of interdependencies between subsystems with each other, which causes different failures in the system. One of the most important of these failures is common cause failure. In this type of failure, several subsystems or all subsystems fail simultaneously or in a short period of time due to a common cause. Failure to consider common cause failures in calculating the reliability of systems leads to an optimistic estimate of the reliability rate of the system and consequently leads to overconfidence in the system. In this paper, first using the product structure separation techniques (PBS), performance flow block diagram (FFBD) to identify and then using the reliability block diagram (RBD) to calculate and allocate the output reliability of a dynamic positioning system that includes hydraulic thrusters And electric for the movements of roll, suge, sui, yaw and hyo, will be discussed.In calculating the reliability of the system with the help of cascade failure probability rules and with the help of beta factor model and PDS method, common cause failures of different subsystems were considered.

کلیدواژه‌ها [English]

  • Reliability
  • Common Cause Failures
  • Cascading Failure
  • Beta Factor Model
  • Dynamic Positioning System
[1] Endrenyi, J (1978). Reliability Modeling in Electric Power Systems, John Wiley and Sons. [2] Billinton, R and Allan, R (1984). Reliability Evaluation of Power Systems, Plenum Press, New York .
[3 [شریفی، محمدمهدی.، مزینان، حسن، غلامی.، کرباسیان، مهدی و شریفی، محمدحسین(1391 .(مهندسی قابلیت اطمینان، انتشارات امید انقلاب .چاپ اول، تهران [4 [موحدی، یزدان.، دولتخواه، مهدی.، کرباسیان، مهدی و راستی، وحید(1392 .(طراحی و توسعه الگویی جهت خصیص و تخمین قابلیت اطمینان سیستمهای پیچیده به روش شبکه های بیزین مطالعه موردی : شاتر یک دوربین(Tech-High ، (نشریه بین المللی مهندسی صنایع و مدیریت تولید. [5 [کرباسیان، مهدی و قوچانی ،محمدمهدی (1390 .(تخصیص قابلیت اطمینان، انتشارات ناقوس.
[6] Saleh, J.H and Marais. K (2006). Highlights from the Early History of Reliability Engineering, Reliability Engineering and System Safety, Volume 91, Issue 2, Pages 249-256. [7 [کرباسیان، مهدی و طباطبایی، لیلا (1939 .(آشنایی با قابلیت اطمینان، انتشارات ارکان دانش،چاپ دوم. [8]Juran, J and Gryna, F (1988). Quality Control Handbook, Fourth Edition, McGraw-Hill, New York, 1988 [9]Kapur, K.C and Lamberson L.R (1977). Reliability in Engineering Design, Wiley, New York. [10]Denson, W (1998). The History of Reliability Prediction, IEEE TRANSACTIONS ON Reliability, VOL. 47, NO. 3-SP. [11 [بیلینتون، روی و آلن، رونالد (1393 .(ارزیابی قابلیت اطمینان سیستمهای مهندسی مفاهیم و روشها، ترجمه محسن رضائیان، انتشارات دانشگاه صنعتی امیر کبیر، چاپ پنجم. [12] Humphreyes, P and Johnston, B.D (1987). Dependent Failure Procedure Guide SRD-R-418”, United Kingdom Atomic Energy Authority, Safety and Reliability Directorate, March. [13] Giuseppe, Mauri (2000). Integrating Safety Analysis Techniques, Supporting Identification of Common Cause Failures, Doctor of Philosophy thesis, University of York, Department of Computer Science. [14] Wenjing, Sun and Marvin, Rausand (2013). Determination of Beta-factors for Safety Instrumented Systems, Master Thesis in Norwegian University of Science and Technology, Department of Production and Quality Engineering. [15] Yuan-Jian,Y ., Hong-Zhong, H., Yu, L., ShunPeng, Z and Weiwen, P (2014). Rellability analysis of electrohydraulic servo valve suffering Common Cause Failure, Journal of Eksploatacja I Niezawodnosc – Maintenance and Reliability. [16] Borcsok, J and Holub, P (2008). Different approaches for probability of common cause failure on demand calculations for safety integrity systems, Proceedings of International Conference on Computer Systems and Applications. [17] Borcsok, J., Schaefer, S and Ugljesa, E (2007). Estimation and evaluation of common cause failures, Proceedings of Second International Conference. [18] Ronan, Fitzmaurice and David, Fitzpatrick (2010) Cascading Failure in a Complex System Model for Power Systems: Operating and Planning Policy, Doctor of Philosophy thesis, University College Dublin. [١٩] Freund, J. E (1961). A Bivariate Extension of the Exponential Distribution, Journal of the American Statistical Association. [٢٠] NUREG-75/014 (1975). Reactor safety: An assessment of accident risk in us commercial nuclear power plants, Technical report, U.S. Nuclear Regulatory. [٢١] Haugea, S., Hokstada, P., Håbrekkea, S and Lundteigen, M.A (2015). Common Cause Failures in Safety-Instrumented Systems: Using Field Experience from the Petroleum Industry, Journal of Reliability Engineering & System Safety. [23] Marvin, Rausand and Arnljot, Høyland (2004). A System Reliability Theory, John Wiley & Sons, Inc., Hoboken,New Jersey, USA, 2. Edition. [24] Smith, A.M and Watson, I.A (1980). Common cause failures – a dilemma in perspective, Journal of Reliability Engineering. [25] Lundteigen, M. A (2010). Lecture slides: Common cause failures. RAMS Group. NTNU, Norwegian University of Science and Technology, 2010. [26] Marvin, Rausand (2014). Reliability of SafetyCritical Systems: Theory and Applications, Wiley, ISBN: 978-1-118-11272-4, March 2014. [27] Humpreys R A (1987). Assigning a numerical value to the beta factor common cause evaluation. Reliability ’87. Proceedings paper 2C. [28] Hammoud, S (2012). Ship Motion Control Using Multi-controller Structure, Journal of Maritime Research. [29] Tannuri, E.A., Agostinho, A.C., Morishita, H.M and Moratelli. L (2010). Dynamic positioning systems: An experimental analysis of sliding mode control, Journal of Control Engineering Practice.