طراحی شبکه زنجیره تأمین چند هدفه ،حلقه بسته سبز و چابک به کمک الگوریتم فرا‌‌ابتکاری علف‌های هرز چند هدفه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت صنعتی، دانشکده مدیریت، واحد اصفهان( خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.

2 استادیار، گروه مدیریت، واحد دهاقان، دانشگاه آزاد اسلامی، دهاقان، ایران

3 دانشکده مهندسی صنایع، دانشگاه صنعتی مالک اشتر، اصفهان، ایران

4 استادیار، گروه اقتصاد، دانشکده امور اداری و اقتصاد، دانشگاه اصفهان، اصفهان، ایران.

چکیده

تغییرات در بازار و نیاز مشتریان یکی از مهم‌ترین موضوعات و چالش‌های مدیران زنجیره تأمین می‌باشد. چابکی مفهومی است که اخیرا توسط محققان حوزه زنجیره تأمین به منظور طراحی هرچه بهتر زنجیره تأمین ارایه شده است. از طرفی دیگر توجه به مشکلات زیست محیطی موضوع دیگری است که زنجیره‌ها تلاش دارند با تمرکز بر این حوزه، مقبولیت خود را افزایش دهند. با توجه به اهمیت موضوع، در این تحقیق به طراحی چند هدفه شبکه زنجیره تأمین حلقه بسته به همراه یکپارچه‌سازی مفاهیم سبز و چابک پرداخته شده است.  در این راستا، یک مدل ریاضی با اهداف اقتصادی، زیست محیطی و چابکی ارائه شده است. به منظور حل این مدل ریاضی، دو روش محدودیت اپسیلون و علف‌های هرز چند هدفه ارائه شده است. نتایج مقایسات انجام شده بین این روش‌ها نشان می‌دهد که الگوریتم علف‌های هرز عملکرد مناسبی از نظر شاخص‌های مختلف کیفیت و پراکندگی مرز پارتو داشته است. در پایان، مطالعه موردی زنجیره تأمین محصولات لبنی شرکت دالان کوه تشریح شده و جواب‌های بهینه حاصل از به کارگیری الگوریتم علف‌های هرز چند هدفه ارایه گردیده است.

کلیدواژه‌ها


[1] Govindan, K., Jafarian, A., & Nourbakhsh, V. (2015). Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic. Computers & Operations Research, 62, 112-130.

[2]Fallah, H., Eskandari, H., & Pishvaee, M. S. (2015). Competitive closed-loop supply chain network design under uncertainty. Journal of Manufacturing Systems, 37, 649-661.

[3] Montoya, A., Vélez–Gallego, M. C., & Villegas, J. G. (2016). Multi-product capacitated facility location problem with general production and building costs. NETNOMICS: Economic Research and Electronic Networking, 17(1), 47-70.

[4] Jena, S. D., Cordeau, J. F., & Gendron, B. (2016). Solving a dynamic facility location problem with partial closing and reopening. Computers & Operations Research, 67, 143-154.

[5] Norol, Holcomb, (2016), Development of a measure to assess quality management in certified firms, European journal of operational research, 156, 683-697.

[6] Zhuo, H., & Wei, S. (2017). Gaming of green supply chain members under government subsidies—Based on the perspective of demand uncertainty. In Proceedings of the Tenth International Conference on Management Science and Engineering Management (pp. 1105-1116). Springer, Singapore.

[7] Burgess, T. F., Grimshaw, P., Huaccho Huatuco, L., & Shaw, N. E. (2017). Mapping the operations and supply chain management field: a journal governance perspective. International Journal of Operations & Production Management, 37(7), 898-926.

[8] Wu, C., & Barnes, D. (2018). Design of agile supply chains including the trade-off between number of partners and reliability. The International Journal of Advanced Manufacturing Technology, 97(9-12), 3683-3700.

[9] Rad, R. S., & Nahavandi, N. (2018). A novel multi-objective optimization model for integrated problem of green closed loop supply chain network design and quantity discount. Journal of Cleaner Production.

[10] Ghelichi, Z., Saidi-Mehrabad, M., & Pishvaee, M. S. (2018). A stochastic programming approach toward optimal design and planning of an integrated green biodiesel supply chain network under uncertainty: A case study. Energy, 156, 661-687.

[11] Liang, L., & Quesada, H. J. (2018). Green Design of a Cellulosic Butanol Supply Chain Network: A Case Study of Sorghum Stem Bio-butanol in Missouri. BioResources, 13(3), 5617-5642.

[12] Mahmoodi, M. (2019). A new multi-objective model of agile supply chain network design considering transportation limits. Production & Manufacturing Research, 7(1), 1-22.

[13] Moradi, A., Razmi, J., Babazadeh, R., & Sabbaghnia, A. (2018). An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial & Management Optimization, 15(2), 855.

[14] Mahmoodi, M. (2019). A new multi-objective model of agile supply chain network design considering transportation limits. Production & Manufacturing Research, 7(1), 1-22.

[15] Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological informatics, 1(4), 355-366.