بهبود کیفیت سیستم‌های چندجزئی در فاز طراحی از طریق بهینه‌سازی چیدمان اجزاء برای ارتقاء عملکرد و تعمیرپذیری (مطالعه موردی: فاصله یاب لیزری)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی مهندسی صنایع، دانشگاه اراک، اراک، ایران

2 دانشکده مهندسی صنایع، دانشگاه صنعتی مالک اشتر، اصفهان، ایران

چکیده

در این مقاله یک مدل برنامه‌ریزی ریاضی چندهدفه‌ی جدید برای تعیین جانمایی اجزای سیستم‌های چندجزئی جهت بهبود کیفیت در فاز طراحی، ارائه شده است. اهداف این مدل شامل حداکثرسازی دسترس‌پذیری به اجزا، نزدیکی/دوری اجزا با برهم‌کنش مثبت/منفی، وجود فضای خالی اطراف اجزا جهت تعمیرپذیری بهتر و کاهش حجم هستند. مدل مذکور ازنظر متغیرهای تصمیم و محدودیت‌ها از رویکرد جدیدی برای تعیین چیدمان استفاده می‌کند که برای اهداف فوق مناسب است. به عنوان مطالعه موردی، ازاین مدل برای تعیین چیدمان اجزای یک فاصله‌یاب لیزری استفاده شده است. ابتدا، در قالب تصمیم‌سازی گروهی و با استفاده از وزن‌دهی با روش بردار ویژه، مسئله به حالت تک‌هدفه تبدیل و در ادامه، مدل تک‌هدفه در لینگو کدنگاری و حل شد. نتایج نشان داد که جواب حاصل 82.7 درصد به حالت ایدئال نزدیک است و دسترس‌پذیری به عنوان مهمترین تابع هدف و الزامات فضای آزاد جهت تعمیر پذیری، 100 درصد با حالت ایدئال منطبق هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Improving the Quality of Design in Multicomponent Systems via Layout Optimization Towards Better Performance and Serviceability 

نویسندگان [English]

  • Mehdy Morady Gohareh 1
  • Ehsan Mansouri 1
  • Mahdi Karbasian 2
1 Assistant Professor, Department of Industrial Engineering, Faculty of Engineering, Arak University, Arak, Iran   
2 Associate Professor, Department of Industrial Engineering, Malek-Ashtar University, Isfahan, Iran   
چکیده [English]

In this paper, a novel multi objective mathematical programing model is developed which focuses on enhancement of quality of design via optimizing the layout of components in multicomponent systems. The objectives include maximization of accessibility to components, optimization of distance between members based on their positive/negative interaction, maximal maintenance space inclusion around components and minimization of total volume of the system. The structure of the variables and constraints of the model is novel and assorts the formulation of the objectives. As a case study, the model is used to optimize the layout of components of a laser range finder. First, the model is converted to a single objective one via the weighting method and by using the eigenvalue approach. Then, the obtained model is solved via Lingo. Results demonstrate that the solution is close to the ideal solution by 82.7%. Moreover, accessibility (the most important objective) and maintenance distance requirement correspond 100% to their ideal value. 

کلیدواژه‌ها [English]

  • Multicomponent systems
  • Layout
  • Quality of design improvement
  • Accessibility. 
Montgomery, D. C., 2019, Introduction to Statistical Quality Control, John Wiley & Sons.
Daskin, M. S., 2011, Network and Discrete Location: Models, Algorithms, and Applications, John Wiley & Sons.
Ahmadi, A., Pishvaee, M. S., and Jokar, M. R. A., 2017, “A Survey on Multi-Floor Facility Layout Problems,” Comput. Ind. Eng., 107, pp. 158–170.
Pasandideh, S. H. R., Niaki, S. T. A., and Hajipour, V., 2013, “A Multi-Objective Facility Location Model with Batch Arrivals: Two Parameter-Tuned Meta-Heuristic Algorithms,” J. Intell. Manuf., 24(2), pp. 331–348.
Feng, J., and Che, A., 2018, “Novel Integer Linear Programming Models for the Facility Layout Problem with Fixed-Size Rectangular Departments,” Comput. Oper. Res., 95, pp. 163–171.
Anjos, M. F., and Vieira, M. V. C., 2017, “Mathematical Optimization Approaches for Facility Layout Problems: The State-of-the-Art and Future Research Directions,” Eur. J. Oper. Res., 261(1), pp. 1–16.
Samarghandi, H., Taabayan, P., and Jahantigh, F. F., 2010, “A Particle Swarm Optimization for the Single Row Facility Layout Problem,” Comput. Ind. Eng., 58(4), pp. 529–534.
Drira, A., Pierreval, H., and Hajri-Gabouj, S., 2007, “Facility Layout Problems: A Survey,” Annu. Rev. Control, 31(2), pp. 255–267.
Zhu, J., Zhang, W., and Beckers, P., 2009, “Integrated Layout Design of Multi‐component System,” Int. J. Numer. Methods Eng., 78(6), pp. 631–651.
Besbes, M., Zolghadri, M., Affonso, R. C., Masmoudi, F., and Haddar, M., 2020, “3D Facility Layout Problem,” J. Intell. Manuf., pp. 1–26.
Do, Q. H., and Chen, J.-F., 2014, “A Hybrid Fuzzy AHP-DEA Approach for Assessing University Performance,” WSEAS Trans. Bus. Econ., 11(1), pp. 386–397.
Chen, X., Yao, W., Zhao, Y., Chen, X., and Zheng, X., 2018, “A Practical Satellite Layout Optimization Design Approach Based on Enhanced Finite-Circle Method,” Struct. Multidiscip. Optim., 58(6), pp. 2635–2653.
Zhang, W., and Zhang, Q., 2009, “Finite-Circle Method for Component Approximation and Packing Design Optimization,” Eng. Optim., 41(10), pp. 971–987.
Hosseini-Nasab, H., Fereidouni, S., Ghomi, S. M. T. F., and Fakhrzad, M. B., 2018, “Classification of Facility Layout Problems: A Review Study,” Int. J. Adv. Manuf. Technol., 94(1), pp. 957–977.
Shouman, M. A., Nawara, G. M., Reyad, A. H., and El-Darandaly, K., 2001, “Facility Layout Problem (FL) and Intelligent Techniques: A Survey,” 7th International Conference on Production Engineering, Design and Control, Alexandria, Egypt, February.
Georgiadis, M. C., Schilling, G., Rotstein, G. E., and Macchietto, S., 1999, “A General Mathematical Programming Approach for Process Plant Layout,” Comput. Chem. Eng., 23(7), pp. 823–840.
Barbosa-Póvoa, A. P., Mateus, R., and Novais, A. Q., 2002, “Optimal 3D Layout of Industrial Facilities,” Int. J. Prod. Res., 40(7), pp. 1669–1698.
Sun, Z.-G., and Teng, H.-F., 2003, “Optimal Layout Design of a Satellite Module,” Eng. Optim., 35(5), pp. 513–529.
Golany, B., Gurevich, A., and Paz Puzailov, E., 2006, “Developing a 3D Layout for Wafer Fabrication Plants,” Prod. Plan. Control, 17(7), pp. 664–677.
Zhang, B., Teng, H.-F., and Shi, Y.-J., 2008, “Layout Optimization of Satellite Module Using Soft Computing Techniques,” Appl. Soft Comput., 8(1), pp. 507–521.
Dong, H., Guarneri, P., and Fadel, G., 2011, “Bi-Level Approach to Vehicle Component Layout with Shape Morphing,” J. Mech. Des., 133(4).
Luo, X., Yang, Y., Ge, Z., Wen, X., and Guan, F., 2014, “Layout Problem of Multi-Component Systems Arising for Improving Maintainability,” J. Cent. South Univ., 21(5), pp. 1833–1841.
Karbasian, M., Mohebi, B., Khayambashi, B., Berah, M. C., and MoradyGohareh, M., 2015, “Maximum Maintainability of Complex Systems via Modulation Based on DSM and Module Layout.Case Study:Laser Range Finder,” Int. J. Ind. Eng. Prod. Res., 26(4), pp. 269–285.
[24] Targhi, N. S., Sabzehparvar, M., and Ebrahimnezhad, S., 2019, “A Mathematical Model for Robust Facility Layout Problem in 3D Space with Possibility of Floors,” 2019 15th Iran International Industrial Engineering Conference (IIIEC), IEEE, pp. 158–164 (persian).
Alamiparvin, R., Mehdizadeh, E., and Soleimani, H., 2021, “A New Mathematical Model for Stochastic Dynamic Unequal Area Facility Layout Problems,” J. Qual. Eng. Prod. Optim.
Suzuki, A., Fuchino, T., Muraki, M., and Hayakawa, T., 1991, “Equipment Arrangement for Batch Plants in Multi-Floor Buildings with Integer Programming,” J. Chem. Eng. Japan, 24(6), pp. 737–742.
Kohara, D., Yamamoto, H., and Suzuki, A., 2008, “Efficient Algorithms Based on Branch and Bound Methods for Multi Floor Facility Layout Problems,” Proceedings of the 9th Asia Pacific Industrial Engineering & Management Systems Conference, Bali, Indonesia, pp. 387–395.
Hahn, P., Smith, J. M., and Zhu, Y.-R., 2010, “The Multi-Story Space Assignment Problem,” Ann. Oper. Res., 179(1), pp. 77–103.
Ahmadi, A., and Jokar, M. R. A., 2016, “An Efficient Multiple-Stage Mathematical Programming Method for Advanced Single and Multi-Floor Facility Layout Problems,” Appl. Math. Model., 40(9–10), pp. 5605–5620.
Izadinia, N., Eshghi, K., and Salmani, M. H., 2014, “A Robust Model for Multi-Floor Layout Problem,” Comput. Ind. Eng., 78, pp. 127–134.
Ha, J.-K., and Lee, E. S., 2016, “Development of an Optimal Multifloor Layout Model for the Generic Liquefied Natural Gas Liquefaction Process,” Korean J. Chem. Eng., 33(3), pp. 755–763.
Che, A., Zhang, Y., and Feng, J., 2017, “Bi-Objective Optimization for Multi-Floor Facility Layout Problem with Fixed Inner Configuration and Room Adjacency Constraints,” Comput. Ind. Eng., 105, pp. 265–276.
MoradyGohareh, M., and Mansouri, E., 2020, “A Mixed Integer Nonlinear Programming for Facility Layout Problem with Maintenance Constraints,” J. Mod. Process. Manuf. Prod., 9(4), pp. 27–37.
Lee, C. J., 2015, “Optimal Multi-Floor Plant Layout Based on the Mathematical Programming and Particle Swarm Optimization,” Ind. Health, 53(6), pp. 491–497.
Lee, C. J., 2014, “Optimal Multi-Floor Plant Layout Based on the Mathematical Programming,” Computer Aided Chemical Engineering, Elsevier, pp. 1477–1482.
Fakoor, M., and Taghinezhad, M., 2016, “Layout and Configuration Design for a Satellite with Variable Mass Using Hybrid Optimization Method,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 230(2), pp. 360–377.
Ghodsypour, S. H., 2018, Multiple Objective Decision Making (MODM): Methods for a Posteriori Articulation of Preference Information Given, Amirkabir University of Technology Publication (persian).
Ghodsypour, S. H., 2019, Analytical Hierarchy Process, Amirkabir University of Technology Publication (persian).