تجزیه و تحلیل قابلیت اطمینان و ارزیابی میزان خرابی (مطالعه موردی: دستگاه مبدل حرارتی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی مهندسی صنایع، دانشگاه آزاد اسلامی واحد علوم تحقیقات تهران

2 گروه مهندسی صنایع، دانشکده فنی، دانشگاه خوارزمی، تهران، ایران

3 استادیار، عضو هیات علمی، دانشکده فنی مهندسی؛ دانشگاه آزاد اسلامی واحد علوم تحقیقات تهران

4 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

5 استادیار، عضو هیات علمی، دانشکده فنی مهندسی؛ دانشگاه آزاد اسلامی واحد تهران شمال

چکیده

مطالعات قابلیت اطمینان بخش مهمی از هر برنامه‌ی مدیریت نگهداری تجهیزات است. با پیچیده‌تر شدن سیستم‌ها، استراتژی‌های نگهداری برای دست‌یابی به تصمیمات پایدار برای مدیریت ضروری است. خرابی‌های ناگهانی در یک سیستم می‌تواند علت اصلی افت عملکرد ماشین‌آلات و تجهیزات صنعتی باشد. برای تصمیم‌گیری حیاتی درباره سیستم، از مکانیسم‌های مختلف تحمل خطا استفاده می‌شود. در مقاله حاضر، یک روش توزیع وایبل دو پارامتری به منظور تجزیه و تحلیل مجموعه داده‌های دستگاه مبدل حرارتی در صنایع پتروشیمی با استفاده از نرم افزار Isograph Hazop + v7.0 مورد بررسی قرار گرفته است. از آنجایی‌که عملکرد موثر یک سیستم، به برنامه‌ریزی و قابلیت اطمینان آن در شرایط مناسب وابسته است، این مقاله به ارائه‌ی یک روش برای بدست آوردن قابلیت اطمینان برای محاسبه فواصل ‌زمانی نگهداری پیشگیرانه در سیستم‌های واقعی پرداخته است. نتایج حاصل منجر به حجم کمتر بازرسی و فعالیت‌های تعمیراتی، ایمنی و قابلیت اطمینان واحدهای صنعتی و سود اقتصادی بیشتر می‌شود.

کلیدواژه‌ها


  • Tsarouhas, P. (2019). Improving operation of the croissant production line through overall equipment effectiveness (OEE). International.
  • Zhu, X. (2011). Analysis and improvement of enterprise's equipment effectivenessbased on OEE. In Electronics, Communications and Control (ICECC), 2011 International Conference on (pp. 4167-4171.
  • Bhatia, K., Khan, F., Patel, H., & Abbassi, R. (2019). Dynamic risk-based inspection methodology. Journal of Loss Prevention in the Process Industries, 62, 103974.
  • Purdy, G. (2010). ISO 31000: 2009 setting a new standard for risk management. Risk Analysis: An International Journal, 30(6), 881-886
  • Kaplan, S., & Garrick, B. J. (1981). On the quantitative definition of risk. Risk analysis, 1(1), 11-27.
  • Magnusson, S. E., Frantzich, H., & Harada, K. (1996). Fire safety design based on calculations: unce rtainty analysis and safety verification. Fire Safety Journal, 27(4), 305-334
  • Tan, Z., Li, J., Wu, Z., Zheng, J., & He, W. (2011). An evaluation of maintenance strategy using risk based inspection. Safety science, 49(6), 852-860.
  • Leva, M. C., Baldissone, G., Caso, R., Demichela, M., Lawlor, L., & Mcaleer, B. (2018). Cost benefit evaluation of maintenance options for aging equipment using monetised risk values: a practical application. Procedia Manufacturing, 19, 119-126
  • Shayeri, J., (2007). Development of Computer-Aided Mainte-nance Resources Planning (CAMRP): A Case of Multiple CNC Machining Centers, Robotics and Computer-Integrated Manufacturing, 23 (6), 614-623
  • Tang, Y., Liu, Q., Jing, J., Yang, Y., & Zou, Z. (2017). A framework for identification of maintenance significant items in reliability centered maintenance. Energy, 118, 1295-1303.
  • Mohsin, K. M., Mokhtar, A. A., & Tse, P. (2019). A fuzzy logic method: Predicting corrosion under insulation of piping systems with modelling of CUI 3D International Journal of Pressure Vessels and Piping, 103929
  • Vishnu, C. R., & Regikumar, V. (2016). Reliability based maintenance strategy selection in process plants: a case study. Procedia technology, 25, 1080-1087.
  • Pui, G., Bhandari, J., Arzaghi, E., Abbassi, R., & Garaniya, V. (2017). Risk-based maintenance of offshore managed pressure drilling (MPD) operation. Journal of Petroleum Science and Engineering, 159, 513-521.
  • Dey, P. K., Ogunlana, S. O., & Naksuksakul, S. (2004). Risk-based maintenance model for offshore oil and gas pipelines: a case study. Journal of Quality in Maintenance Engineering, 10(3), 169-183
  • Petrović, D. V., Tanasijević, M., Milić, V., Lilić, N., Stojadinović, S., & Svrkota, I. (2014). Risk assessment model of mining equipment failure based on fuzzy logic. Expert Systems with Applications, 41(18), 8157-8164.
  • Marhavilas, P. K., Koulouriotis, D., & Gemeni, V. (2011). Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009. Journal of Loss Prevention in the Process Industries, 24(5), 477-523.
  • Florian, M., & Sørensen, J. D. (2017). Risk-based planning of operation and maintenance for offshore wind farms. Energy Procedia, 137, 261-272.
  • Shuai, J., Han, K., & Xu, X. (2012). Risk-based inspection for large-scale crude oil tanks. Journal of Loss Prevention in the Process Industries, 25(1), 166-175.
  • Arunraj, N. S., & Maiti, J. (2007). Risk-based maintenance—Techniques and applications. Journal of hazardous materials, 142(3), 653-661
  • Dey, P. K. (2001). A risk-based model for inspection and maintenance of cross-country petroleum pipeline. Journal of Quality in Maintenance Engineering, 7(1), 25-43
  • Guo, L., Gao, J., Yang, J., & Kang, J. (2009). Criticality evaluation of petrochemical equipment based on fuzzy comprehensive evaluation and a BP neural network. Journal of loss Prevention in the Process Industries, 22(4), 469-476.
  • Tellez, R., Svrcek, W. Y., Ross, T. J., & Young, B. R. (2006). Heat exchanger network process modifications for controllability using design reliability theory. Computers & chemical engineering, 30(4), 730-743
  • Prayogo, G. S., Haryadi, G. D., Ismail, R., & Kim, S. J. (2016, April). Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581. In AIP Conference Proceedings (Vol. 1725, No. 1, p. 020062). AIP Publishing.
  • Carroll, J., McDonald, A., & McMillan, D. (2016). Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines. Wind Energy, 19(6), 1107-1119.
  • Asadzadeh, Sh., (2019). Optimal Modeling and Forecasting of Equipment Failure Rate for the Electricity Distribution Network, Electric Industry Journal of Quality and Productivity,8 (1), 113-118.
  • Khan, F. I., Sadiq, R., & Haddara, M. M. (2004). Risk-based inspection and maintenance (RBIM): multi-attribute decision-making with aggregative risk analysis. Process safety and environmental protection, 82(6), 398-411.
  • Javid, Y. (2021). A bi-objective mathematical model to determine risk-based inspection program, Process Safety and Environmental Protection 146 (2021) 893–904
  • Alavian, P., Eun, Y., Liu, K., Meerkov, S. M., & Zhang, L. (2019). The (α, β)-Precise Estimates of MTBF and MTTR: Definitions, Calculations, and Induced Effect on Machine Efficiency Evaluation. IFAC-Papers On Line, 52(13), 1004-1009.
  • Zagirnyak, M., & Prus, V. (2016). Use of neuronets in problems of forecasting the reliability of electric machines with a high degree of mean time between failures. Przeglad Elektrotechniczny (Electrical Review), 92(1), 132-135.
  • Mortazavi, S. M., Mohamadi, M., & Jouzdani, J. (2018). MTBF evaluation for 2-out-of-3 redundant repairable systems with common cause and cascade failures considering fuzzy rates for failures and repair: a case study of a centrifugal water pumping system. Journal of Industrial Engineering International, 14(2), 281-291.
  • Vagenas, N., Runciman, N., & Clément, S. R. (1997). A methodology for maintenance analysis of mining equipment. International Journal o/Surface Mining, Reclamation and Environment, 11(1), 33-40.
  • Dolas, D. R., Jaybhaye, M. D., & Deshmukh, S. D. (2014). Estimation the system reliability using Weibull distribution. International Proceedings of Economics Development and Research, 75, 144.
  • Xie, M., & Lai, C. D. (1996). Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliability Engineering & System Safety, 52(1), 87-93.
  • Rachman, A., & Ratnayake, R. C. (2019). Machine learning approach for risk-based inspection screening assessment. Reliability Engineering & System Safety, 185, 518-532.
  • Luque, J., & Straub, D. (2019). Risk-based optimal inspection strategies for structural systems using dynamic Bayesian networks. Structural Safety, 76, 68-80.
  • Hewitt, G. F., Shires, G. L., & Bott, T. R. (1994). Process heat transfer (Vol. 113, p. 263). Boca Raton, FL CRC press
  • Klutke, G. A., Kiessler, P. C., & Wortman, M. A. (2003). A critical look at the bathtub curve. IEEE Transactions on reliability, 52(1), 125-129
  • Tan, Z., Li, J., Wu, Z., Zheng, J., & He, W. (2011). An evaluation of maintenance strategy using risk based inspection. Safety science, 49(6), 852-860
  • Mukherjee, R. (1998). Effectively design shell-and-tube heat exchangers. Chemical Engineering Progress, 94(2), 21-37.
  • Tixier, J., Dusserre, G., Salvi, O., & Gaston, D. (2002). Review of 62 risk analysis methodologies of industrial plants. Journal of Loss Prevention in the process industries, 15(4), 291-303.
  • American Petroleum Institute, Second Edition November 2008: "Risk-Based Inspection", API 581
  • Simeone, A., Watson, N., Sterritt, I., & Woolley, E. (2016). A multi-sensor approach for fouling level assessment in clean-in-place processes. Procedia Cirp, 55, 134-139.
  • Rushton, A., Croucher, P., & Baker, P. (2014). The handbook of logistics and distribution management: Understanding the supply chain. Kogan Page Publishers.
  • Dhillon, B. S. (2008). Mining equipment reliability (pp. 57-70). Springer London