نمودار کنترلی علامت GWMA تحت نمونه‌گیری مجموعه‌ی رتبه‌ای برای پایش پارامتر مکان فرایند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علامه طباطبائی

2 دانشگاه علامه طباطبایی

چکیده

نمودارهای کنترلی به‌صورت گسترده‌ای در شناسایی تغییرات فرایند تولید مورد استفاده قرار می‌گیرند و زمانی‌که شناسایی تغییرات کوچک در فرایند، مد نظر باشد، نمودارهای کنترلی غیرشوهارتی مانند میانگین متحرک موزون نمایی (EWMA) و میانگین متحرک موزون تعمیم‌یافته (GWMA) جایگزین بهتری برای نمودارهای کنترلی شوهارتی مانند X ̅ هستند. نمودار کنترلی ‎GWMA‎‏ حساسیت بیش‌تری در شناسایی انتقال‌های کوچک در پارامتر مکان فرایند نسبت به نمودار کنترلی ‎EWMA‎‏ و نمودار کنترلی X ̅ دارد. نمودارهای کنترلی ناپارامتری در مواقعی که توزیع مشخصه‌ی کیفیت فرایند نامعلوم است‏، مورد استفاده قرار می‌گیرند. نمودار کنترلی علامت یکی از معروف‌ترین نمودارهای کنترلی ناپارامتری است که ﺑﻪ ﻋﻠﺖ ﺳﻬﻮﻟﺖ ﺩﺭ ﮐﺎﺭﺑﺮﺩ ﻭ ﻋﺪﻡ ﻣﺤﺎﺳﺒﺎﺕ ﻋﺪﺩﯼ ﭘﯿﭽﯿﺪﻩ ﺑﻪ‌ﻃﻮﺭ ﮔﺴﺘﺮﺩﻩ‌ﺍﯼ ﮐﺎﺭﺑﺮﺩ ﺩﺍﺭﺩ. برای اولین بار در این مقاله، نمودار کنترلی علامت میانگین متحرک موزون تعمیم‌یافته با استفاده از طرح نمونه‌گیری مجموعه‌ی رتبه‌ای معرفی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A Nonparametric GWMA Control Chart under Ranked Set Sampling for Monitoring Process Location Parameter

نویسندگان [English]

  • Mahtab Nazari 1
  • Mohammad Bamanimoghadam 2
  • Rahmat Shojaei 1
1 Allameh Tabataba'i University
2 a
چکیده [English]

Control charts are widely used to identify changes in the production process, and when it comes to identifying small changes in the process, non-Shewhart control charts such as exponential weighted moving average (EWMA) and generalized weighted moving average (GWMA) are better alternatives to control charts than Shewhart ¯X control chart. In this context, nonparametric control charts are used when the distribution of quality characteristic of the process is unknown, in which the Sign control chart is one of the most popular nonparametric control charts. In this paper, for the first time, a generalized weighted moving average sign control chart using a ranked set sampling (RSS) design is introduced. The performance of the proposed control chart is evaluated using simulated data according to the average run length evaluation criterion, and simulation studies showed that the GWMA sign control chart under the RSS design is better at detecting small process changes than the EWMA sign control chart under the RSS design.

کلیدواژه‌ها [English]

  • GWMA sign control chart
  • EWMA sign control chart
  • Ranked set sampling
  • Nonparametric control chart
  • Location parameter
Shewhart, W. A. (1924). “Some applications of statistical methods to the analysis of physical and engineering data,” Bell Labs Technical Journal, 3(1), 43-87.
Roberts, S. W. (1959). “Control chart tests based on geometric moving averages, ”Technometrics, 1(3), 239-25.
Sheu, S. H., and  Lin, T. C.  (2003). “the generally weighted moving average control chart for detecting small shifts in the process mean,” Quality Engineering, 16(2), 209-231.
Arbuthnot, J. (1710). “An argument for divine providence, taken from the constant regularity observed in the births of both sexes,” Philosophical Transactions of the Royal Society of London, 27, 186-190.
Wilcoxon, F. (1945). “Individual comparisons by ranking methods,” Biometrics, 1: 80-83.
Mann, H. B. and Whitney, D. R. (1947).  “On a test whether one of two random variables is stochastically larger than the other,” Ann. Math. Statistics, 18, 50-60.
Amin, R. W., Reynolds Jr, M. R., and Saad, B. (1995). “Nonparametric quality control
charts based on the sign statistic,” Communications in Statistics-Theory and Methods, 24,
1597–1623.
Yang, S. F., Lin, J. S., and Cheng, S. W. (2011). “A new nonparametric EWMA sign control
chart,” Expert Systems with Applications, 38, 6239–6243.
Hou, S., & Yu, K. (2021). A non-parametric CUSUM control chart for process distribution change detection and change type diagnosis. International Journal of Production Research, 59(4), 1166-1186.‏
McIntyre, G. A. (1952). “A method of unbiased selective sampling using ranked sets,” Australian Journal of Agricultural Research, 3, 385-390.
Takahasi, K., and K. Wakimoto. (1968). “On Unbiased Estimates of the Population Mean Based on the Sample Stratifed by Means of Ordering.” Annals of the Institute of Statistical Mathematics 20 (1): 1–31. doi: 10.1007/ BF02911622.
Muttlak, H. A., and W. Al-Sabah. (2003). “Statistical Quality Control Based on Pair and Selected Ranked Set Sampling.” Pakistan Journal of Statistics 19 (1): 107–128.
Abujiya, M. R., and H. Muttlak. (2004). “Quality Control Chart for the Mean Using Double Ranked Set Sampling.” Journal of Applied Statistics 31 (10):1185–1201.
Lee, M. H. (2013). “The three statistical control charts using ranked set sampling,” In Modeling, Simulation and Applied Optimization (ICMSAO), 5th International Conference on (pp. 1-6). IEEE.
Hettmansperger, T. P. (1995). ”The ranked-set sample sign test,” Journal of Nonparametric Statistics, 4(3), 263-270.
Abid, M., Nazir, H. Z., Riaz, M., and Lin, Z. (2016). “Use of ranked set sampling in nonparametric control charts,” Journal of the Chinese Institute of Engineers, 39, 627–636.
 
Asghari, S., Sadeghpour Gildeh, B., Ahmadi, J. and Mohtashami Borzadaran, G. (2017). “Sign control chart based on ranked set sampling,” Quality Technology & Quantitative Management, 1-21.
Ali, S., Abbas, Z., Nazir, H. Z., Riaz, M., Zhang, X., & Li, Y. (2020). On Designing Non-Parametric EWMA Sign Chart under Ranked Set Sampling Scheme with Application to Industrial Process. Mathematics, 8(9), 1497.‏
Knoth, S., Woodall, W. H., & Tercero-Gómez, V. G. (2022). The case against generally weighted moving average (GWMA) control charts. Quality Engineering34(1), 75-81.‏
 Koti, K. M. and Jogesh Babu, G. (1996). “Sign test for ranked-set sampling,” Communications in Statistics-Theory and Methods, 25, 1617–1630.
Lu, S. L. (2015). “An extended nonparametric exponentially weighted moving average sign
control chart,” Quality and Reliability Engineering International, 31, 3–13.
Lu, S. L. (2018). Non parametric double generally weighted moving average sign charts based on process proportion. Communications in Statistics-Theory and Methods47(11), 2684-2700