ارائه یک مدل شبیه‌سازی گسسته ‌پیشامد برای بهبود کیفیت خدمات (مطالعه موردی در واحد اورولوژی یک مرکز فوق‌تخصصی کلیه)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی صنایع، دانشکده مهندسی صنایع و سیستم‌ها، دانشگاه تربیت مدرس، تهران، ایران

2 ) استادیار، دانشکده مهندسی صنایع و سیستم‌ها، دانشگاه تربیت مدرس، تهران، ایران

چکیده

زمان انتظار برای دریافت خدمات درمانی یکی از مهم‌ترین شاخص‌های رضایتمندی بیماران محسوب شده که تاثیر قابل توجهی بر اثربخشی و کیفیت خدمات ارائه شده به بیماران دارد. مطالعه شبیه‌سازی برای بهبود جریان بیمار، کاهش زمان انتظار و افزایش رضایت بیماران به عنوان یک ابزار مؤثر به‌کار می‌رود. مطالعه حاضر به بهبود کیفیت خدمات درمانی در یک واحد اورولوژی واقع در یک مرکز فوق‌تخصصی کلیه در تهران، پرداخته است. هدف از این مطالعه کاهش زمان انتظار، نرخ کنسلی بیماران و نیز افزایش کارایی فرایند‌های روش سنگ‌شکنی برون‌اندامی (ESWL) بوده است. یک مدل شبیه‌سازی گسسته‌پیشامد با استفاده از نرم‌افزار iGrafx توسعه یافته که از آن به همراه نرم‌افزار MATLAB، جهت تشکیل و ارزیابی سناریو‌های بهبود‌‌ دهنده واحد اورولوژی در سه دسته شامل تغییر زمان‌بندی حضور تکنسین‌ها در طی شیفت‌های کاری، تغییر زمان‌بندی مراجعه بیماران و نیز بررسی عوامل کاهش دهنده نرخ کنسلی بیماران، استفاده شده است. نتایج حاصل نشان‌ دهنده بیش‌ترین تفاوت در به‌کارگیری سناریو‌های زمان‌بندی مراجعه بیماران در معیار‌های زمان انتظار و طول مدت اقامت به میزان متوسط 23.33 و 22.81 دقیقه نسبت به وضعیت موجود است. علاوه براین، نتایج بررسی عوامل کاهش دهنده نرخ کنسلی بیماران، نشان‌دهنده کاهش در تعداد موارد کنسلی به میزان متوسط 1.44 مورد در روز می‌باشد. برای هر دسته از سناریو‌های پیشنهادی، اعمال تغییرات بر ‌اساس سناریوی برگزیده، بهبود قابل توجهی در معیار‌های عملکردی واحد اورولوژی ایجاد نموده که در این میان، تاثیر سناریو‌های زمان‌بندی مراجعه‌ بیماران در مقایسه با سایر سناریو‌ها به مراتب بیش‌تر بوده است. 

کلیدواژه‌ها


[1] .Junuzovic, D., et al., Evaluation of extracorporeal shock wave lithotripsy (ESWL): efficacy in treatment of urinary system stones. Acta Informatica Medica, 2014. 22(5): p. 309.
 [2] Babenko, A., et al., About the formation of patients' flow in multi-type hospital. Problemy sotsial'noi gigieny, zdravookhraneniia i istorii meditsiny, 2012(6): p. 35-38.
[3] Tanagho, E. and J. McAninch, Smith's general urology. 2007: McGraw-Hill Prof Med/Tech.
[4] Tiselius, H.G., Epidemiology and medical management of stone disease. BJU international, 2003. 91(8): p. 758-767.
[5] Li, L., et al., Clinical analysis of 41 children's urinary calculus and acute renal failure. Zhonghua er ke za zhi= Chinese journal of pediatrics, 2013. 51(4): p. 295-297.
[6] Safarinejad, M.R., Adult urolithiasis in a population-based study in Iran: prevalence, incidence, and associated risk factors. Urological research, 2007. 35(2): p. 73-82.
[7] Rizvi, S., et al., The management of stone disease. BJU international, 2002. 89: p. 62-68.
[8] Stamatelou, K.K., et al., Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney international, 2003. 63(5): p. 1817-1823.
[9] Romero, V., H. Akpinar, and D.G. Assimos, Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Reviews in urology, 2010. 12(2-3): p. e86.
[10] Moe, O.W., Kidney stones: pathophysiology and medical management. The lancet, 2006. 367(9507): p. 333-344.
[11] Ghalayini, I.F., M.A. Al-Ghazo, and Y.S. Khader, Evaluation of emergency extracorporeal shock wave lithotripsy for obstructing ureteral stones. International braz j urol, 2008. 34(4): p. 433-442.
[12] D’Addessi, A., et al., Complications of extracorporeal shock wave lithotripsy for urinary stones: to know and to manage them—a review. The Scientific World Journal, 2012. 2012.
[13] Chaussy, C., et al., Extracorporeal shock-wave lithotripsy (ESWL) for treatment of urolithiasis. Urology, 1984. 23(5): p. 59-66.
[14] Ahmed, M.A. and T.M. Alkhamis, Simulation optimization for an emergency department healthcare unit in Kuwait. European journal of operational research, 2009. 198(3): p. 936-942.
[15] Zeng, Z., et al., A simulation study to improve quality of care in the emergency department of a community hospital. Journal of emergency Nursing, 2012. 38(4): p. 322-328.
[16] Robinson, S., et al., SimLean: Utilising simulation in the implementation of lean in healthcare. European Journal of Operational Research, 2012. 219(1): p. 188-197.
[17] Hajjarsaraei, H., B. Shirazi, and J. Rezaeian, Scenario-based analysis of fast track strategy optimization on emergency department using integrated safety simulation. Safety science, 2018. 107: p. 9-21.
[18] Eldabi, T., R.J. Paul, and T. Young, Simulation modelling in healthcare: reviewing legacies and investigating futures. Journal of the Operational Research Society, 2007. 58(2): p. 262-270.
[19] Jacobson, S.H., S.N. Hall, and J.R. Swisher, Discrete-event simulation of health care systems, in Patient flow: Reducing delay in healthcare delivery. 2006, Springer. p. 211-252.
[20] Almagooshi, S., Simulation modelling in healthcare: Challenges and trends. Procedia Manufacturing, 2015. 3: p. 301-307.
[21] Takakuwa, S. and H. Shiozaki. Functional analysis for operating emergency department of a general hospital. in Simulation Conference, 2004. Proceedings of the 2004 Winter. 2004. IEEE.
[22] Chen, P.-S., et al., Scheduling patients’ appointments: Allocation of healthcare service using simulation optimization. Journal of healthcare engineering, 2015. 6(2): p. 259-280.
[23] Yokouchi, M., et al. Operations analysis and appointment scheduling for an outpatient chemotherapy department. in Proceedings of the Winter Simulation Conference. 2012. Winter Simulation Conference.
[24] Weerawat, W., J. Pichitlamken, and P. Subsombat, A generic discrete-event simulation model for outpatient clinics in a large public hospital. Journal of healthcare engineering, 2013. 4(2): p. 285-305.
[25] Rohleder, T.R., et al., Using simulation modeling to improve patient flow at an outpatient orthopedic clinic. Health care management science, 2011. 14(2): p. 135-145.
[26] Monnickendam, G. and C. De Asmundis, Why the distribution matters: Using discrete event simulation to demonstrate the impact of the distribution of procedure times on hospital operating room utilisation and average procedure cost. Operations research for health care, 2018. 16: p. 20-28.
[27] Ferreira, R.B., et al., Optimizing patient flow in a large hospital surgical centre by means of discrete‐event computer simulation models. Journal of evaluation in clinical practice, 2008. 14(6): p. 1031-1037.
[28] Evans, G.W., E. Unger, and T.B. Gor. A simulation model for evaluating personnel schedules in a hospital emergency department. in Simulation Conference, 1996. Proceedings. Winter. 1996. IEEE.
[29] Wong, S., et al. A simulation study to achieve healthcare service quality improvement in accident & emergency department (AED). in Quality and Reliability (ICQR), 2011 IEEE International Conference on. 2011. IEEE.
[30] Ostadi, B., Mokhtarian Daloie, R., and Sepehri, M. M. (2018). “A Combined Modelling of Fuzzy Logic and Time-Driven Activity-Based Costing (TDABC) for Hospital Services Costing Under Uncertainty”, Journal of Biomedical Informatics, 89(1), PP. 11-28.
[31] Tako, A.A., et al., Improving patient waiting times: a simulation study of an obesity care service. BMJ Qual Saf, 2013: p. bmjqs-2013-002107.
[32] Santibáñez, P., et al., Reducing patient wait times and improving resource utilization at British Columbia Cancer Agency’s ambulatory care unit through simulation. Health care management science, 2009. 12(4): p. 392.
[33] Mocarzel, B., et al. Modeling and simulation of patient admission services in a multi-specialty outpatient clinic. in Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World. 2013. IEEE Press.
[34] Saadouli, H., et al., A stochastic optimization and simulation approach for scheduling operating rooms and recovery beds in an orthopedic surgery department. Computers & Industrial Engineering, 2015. 80: p. 72-79.
[35] Bahou, N., et al., Modeling the critical care pathway for cardiothoracic surgery. Health care management science, 2018. 21(2): p. 192-203.