آنالیز حساسیت و بررسی قابلیت اعتماد سیستم های منسجم با اجزاء وابسته در کارکرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی صنایع، دانشگاه صنعتی مالک اشتر، اصفهان، ایران

2 دانشگاه آزاد اسلامی نجف اباد

3 دانشگاه ازاد نایین

چکیده

بسیاری از مهندسان و محققان، مدل­های قابلیت اطمینان خود را بر اساس این فرضیه قرار می­دهند که اجزاء یک سیستم از نظر آماری به شیوه­ی مستقل، کار می کنند و با شکست مواجهه می­شوند. این فرض اغلب در عمل نقض می­گردد زیرا ، عوامل خاص محیطی و سیستمی در کارکرد اجزاء تاثیر گذار بوده و در نتیجه به شکست­­های همبسته کمک می­کند، که می­تواند قابلیت اطمینان یک سیستم را کاهش دهد. تعیین شاخص همبستگی  اجزاء و تاثیر آن بر قابلیت اطمینان سیستم ضرورت دارد  تا بتواند مدل­ها را ملزم کند تا به طور صریح شکست­های پیوسته را ترکیب و هماهنگ کند و برآورد درستی از قابلیت اطمینان سیستم ارائه دهند. رویکردهای قبلی برای مدل سازی  همبستگی، محدود به سیستم­هایی هستند که شامل دو یا سه جزء بوده  و یا فرض می­شوند که کارکرد اجزاء، از نظر آماری مستقل هستند. در این پژوهش ضمن در نظر گرفتن وابستگی  بین کارکرد اجزاء به ارائه مدلی برای  در نظر گرفتن این وابستگی  و محاسبه قابلیت اطمینان سیستم های سری ، موازی ، سیستم های k-out of-n ، موازی-سری و سری- موازی  پرداخته شده است و برای درک بهتر مساله مثالهایی  همراه با تحلیل حساسیت ارائه شده است که در آن اجزاء از لحاظ کارکرد بهم وابسته اند این مثالها نشان می دهد که چگونه همبستگی بین اجزاء بر کارکرد آنها تاثیر گذار بوده است .

کلیدواژه‌ها


عنوان مقاله [English]

Developing a method for allocating reliability to subsystems of a cube satellite adopting suppliers readiness level approach. 

نویسندگان [English]

  • Mahdi Karbasian 1
  • Roya Ahari 2
  • Mostafa Banitaba 3
1 Industrial Engineering college, malek-e-Ashtar university of Technology (MUT), Isfahan, Iran   
2 a
3 a
چکیده [English]

Many engineers and researchers base their reliability models on the hypothesis that the components of a system work statistically independently and fail. This assumption is often violated in practice because, specific environmental and systemic factors affect the performance of components and thus contribute to correlated failures, which can reduce the reliability of a system. Determining the component correlation index and its effect on system reliability is necessary to be able to require models to explicitly combine and coordinate continuous failures and provide an accurate estimate of system reliability. Previous approaches to correlation modeling are limited to systems that consist of two or three components or assume that the operation of the components is statistically independent. In this study, while considering the dependence between component functions, a model is presented to consider this dependence and calculate the reliability of series, parallel, k-out of-n, parallel-series and series-parallel systems. To better understand the problem, examples are provided with sensitivity analysis in which the components are functionally interdependent. These examples show how the correlation between the components has affected their performance.

کلیدواژه‌ها [English]

  • Sensitivity analysis
  • average time to failure
  • Reliability
References
 
[1]        J. L. Devore, Probability and Statistics for Engineering and the Sciences: Cengage learning, 2011.
[2]        H. C. Tuckwell, Elementary applications of probability theory: Routledge, 2018.
[3]        G. Levitin and L. Xing, "Reliability and performance of multi-state systems with propagated failures having selective effect," Reliability Engineering & System Safety, vol. 95, pp. 655-661, 2010.
[4]        Y.-F. Li, H.-Z. Huang, J. Mi, W. Peng, and X. Han, "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, pp. 1-15, 2019.
[5]        J. Qin and Z. Li, "Reliability and Sensitivity Analysis Method for a Multistate System with Common Cause Failure," Complexity, vol. 2019, 2019.
[6]        L. Xing and G. Levitin, "BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures," Reliability Engineering & System Safety, vol. 112, pp. 145-153, 2013.
[7]        R. E. Barlow and F. Proschan, "Statistical theory of reliability and life testing: probability models," Florida State Univ Tallahassee1975.
[8]        L. Bain, Statistical analysis of reliability and life-testing models: theory and methods: Routledge, 2017.
[9]        B. S. Dhillon, "Engineering reliability: new techniques and applications," 1981.
[10]      K. Roscoe, F. Diermanse, and T. Vrouwenvelder, "System reliability with correlated components: Accuracy of the Equivalent Planes method," Structural Safety, vol. 57, pp. 53-64, 2015.
[11]      K. C. Chae and G. M. Clark, "System reliability in the presence of common-cause failures," IEEE Transactions on Reliability, vol. 35, pp. 32-35, 1986.
[12]      B. Dhillon and O. Anude, "Common-cause failures in engineering systems: A review," International Journal of Reliability, Quality and Safety Engineering, vol. 1, pp. 103-129, 1994.
[13]      J. F. van Casteren, M. H. Bollen, and M. E. Schmieg, "Reliability assessment in electrical power systems: the Weibull-Markov stochastic model," IEEE Transactions on Industry Applications, vol. 36, pp. 911-915, 2000.
[14]      L. Xing, L. Meshkat, and S. K. Donohue, "Reliability analysis of hierarchical computer-based systems subject to common-cause failures," Reliability Engineering & System Safety, vol. 92, pp. 351-359, 2007.
[15]      L. Fiondella, S. Rajasekaran, and S. S. Gokhale, "Efficient software reliability analysis with correlated component failures," IEEE Transactions on reliability, vol. 62, pp. 244-255, 2013.
[16]      L. Fiondella and S. S. Gokhale, "Estimating system reliability with correlated component failures," International Journal of Reliability and Safety, vol. 4, pp. 188-205, 2010.
[17]      Y.-K. Lin, P.-C. Chang, and L. Fiondella, "A study of correlated failures on the network reliability of power transmission systems," International Journal of Electrical Power & Energy Systems, vol. 43, pp. 954-960, 2012.
[18]      Q. Yang, N. Zhang, and Y. Hong, "Reliability analysis of repairable systems with dependent component failures under partially perfect repair," IEEE Transactions on Reliability, vol. 62, pp. 490-498, 2013.
[19]      L. FIONDELLA, "Reliability and sensitivity analysis of coherent systems with negatively correlated component failures," International Journal of Reliability, Quality and Safety Engineering, vol. 17, pp. 505-529, 2010.
[20]      S.-W. Lin, Y.-T. Liu, and M. A. Jerusalem, "Bayesian reliability analysis of a products of probabilities model for parallel systems with dependent components," International Journal of Production Research, vol. 56, pp. 1521-1532, 2018.
[21]      K. Zhou, J. Ding, J. Chen, and W. Tao, "Reliability and Component Importance Analysis of Substation Automation System in Multi-State Mode," Electric Power Components and Systems, pp. 1-16, 2019.
[22]      L. J. Emrich and M. R. Piedmonte, "A method for generating high-dimensional multivariate binary variates," The American Statistician, vol. 45, pp. 302-304, 1991.