برآورد پارامتر قابلیت اعتماد برای توزیع نمایی وارون‌ تعمیم‌یافته براساس نمونه‌های سانسور فزاینده نوع 2

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه آمار، دانشکده علوم پایه، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

2 گروه آمار، دانشکده علوم پایه، دانشگاه بین المللی اما خمینی (ره)، قزوین، ایران

3 گروه برق، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

هدف این مقاله، بررسی پارامتر قابلیت اعتماد R=P(X<Y) براساس نمونه هایی با سانسور فزاینده نوع 2 است که در آن X و Y متغیرهای تصادفی مستقل با توزیع نمایی وارون تعمیم یافته با پارامترهای شکل متفاوت و پارامتر مقیاس یکسان هستند. برآوردگرماکسیمم درست نمایی (MLE) و برآوردگر نااریب با واریانس به طور یکنواخت‌ مینیمم (UMVUE) پارامترR به دست می آیند و بازه های اطمینان مختلفی ارائه می شوند. همچنین، برآوردگر بیز R و بازه اطمینان HPD با استفاده از روش نمونه گیری گیبز پیشنهاد می شوند. شبیه‌ سازی‌ های مونت کارلو برای مقایسه عملکرد روش های مختلف انجام شده است.

کلیدواژه‌ها


 [۱] Birnbaum, Z.W. (1956). On a use of Mann-Whitney statistics. Proceedings of the third Berkley Symposium in Mathematics, Statistics and Probability. 1, 13-17.
[2] Kotz, S., Lumelskii, Y. and Pensky, M. (2003). The stress-strength model and its generalization: theory and applications. World Scientific, Singapore.
[3] Kundu, D. and Gupta, R.D. (2005). Estimation of R=P(Y<X) for the generalized exponential distribution. Metrika. 61, 291-308.
[4] Kundu, D. and Gupta, R.D. (2006). Estimation of R=P(Y<X) for Weibull distribution. IEEE Transactions on Reliability. 55, 270-280.
[5] Raqab, M.Z. and Kundu, D. (2005). Comparison of different estimators of R=P(Y<X) for a scaled Burr Type X distribution. Communications in Statistics - Simulation and Computation. 34, 465-483.
[6] Krishnamoorthy, K., Mukherjee, S. and Guo, H. (2007). Inference on reliability in two-parameter exponential stress-strength model. Metrika. 65, 261-273.
[7] Raqab, M.Z., Madi, M.T. and Kundu, D. (2008). Estimation of R=P(Y<X) for the 3-parameter generalized exponential distribution. Communications in Statistics - Theory and Methods. 37, 2854-2864.
[8] Kundu, D. and Raqab, M.Z. (2009). Estimation of R=P(Y<X) for three parameter Weibull distribution. Statistics and Probability Letters. 79, 1839-1846.
[9] Lio, Y.L. and Tsai, T.R. (2012). Estimation of δ= P(X<Y) for Burr XII distribution based on the progressively first failure-censored samples. Journal of Applied Statistics. 39, 309-322.
[11] Kohansal. A and Rezakhah, S. (2019). Inference of R=P(Y<X) for two-parameter Rayleigh distribution based on progressively censored samples. Statistics.53, 81-100.
[12] Balakrishnan, N. and Aggarwala, R. (2000). Progressive censoring: theory, methods and applications. Birkhauser, Boston.
[13] Abouammoh, A.M. and Alshingiti, A.M. (2009). Reliability estimation of generalized inverted exponential distribution. Journal of Statistical Computation and Simulation. 79, 1301-1315.
[14] Krishna, H. and Kumar, K. (2013). Reliability estimation in generalized inverted exponential distribution with progressively type II censored sample. Journal of Statistical Computation and Simulation. 83, 1007-1019.
[15] Dey, S. and Pradhan, B. (2014). Generalized inverted exponential distribution under hybrid censoring. Statistical Methodology. 18, 101-114.
[16] Cao, J.H. and Chen, K. (2006). An introduction to the reliability mathematics. Beijing: Higher Education Press.
[17] Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions. 2nd ed., Wiley, NewYork.
[18] Efron, B. (1982). The jackknife, the bootstrap and other re-sampling plans. Philadelphia, PA: SIAM, CBMSNSF Regional Conference Series in Applied Mathematics. 34.
[19] Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals. Annals of Statistics. 16, 927-953.
[20] Chen, M.H. and Shao, Q.M. (1999). Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics. 8, 69-92.
[21] Lindley, D.V. (1980). Approximate Bayesian methods. Trabajos de Estadistica. 3, 281-288.
[22] Ahmad, K.E., Fakhry, M.E. and Jaheen, Z.F. (1997). Empirical Bayes estimation of P(Y<X) and characterization of Burr-Type X model. Journal of Statistical Planning and Inference. 64, 297-308.