تخمین نقطه تغییر در ماتریس کواریانس فرآیند نرمال چند متغیره با استفاده از شبکه عصبی

نوع مقاله: مقاله پژوهشی

نویسندگان

مهندسی صنایع، فنی و مهندسی، دانشگاه شاهد، تهران، ایران

چکیده

در اکثر مواقع، هشداری که از یک نمودار کنترل دریافت می‌شود نشان‌دهنده زمان واقعی تغییر در فرآیند نیست که علت آن وجود تأخیر بین زمان واقعی تغییر و زمان دریافت هشدار از نمودار کنترل است. در نتیجه نیاز است که زمان واقعی تغییر که از آن به عنوان "نقطه تغییر" یاد می‌شود، بررسی شود. با بررسی ادبیات موضوع شناسایی زمان واقعی تغییر در فرآیند می‌توان نتیجه گرفت که اکثر تحقیقات انجام شده در این حوزه بر فرآیندهای تک متغیره متمرکز بوده و تحقیقات اندکی به فرآیندهای چند متغیره اختصاص یافته است. علاوه بر این، بیش‌تر تحقیقات انجام شده در حوزه تخمین زمان تغییر در فرآیندهای چند متغیره معطوف به تغییرات در بردار میانگین فرآیند بوده و تنها یک تحقیق در خصوص ماتریس کواریانس انجام شده است. در این مقاله مدلی مبتنی بر شبکه عصبی مصنوعی برای تخمین نقطه تغییر در ماتریس کواریانس فرآیندهای نرمال چند متغیره پیشنهاد شده است. روش ارائه شده در فاز 2 نمودارهای کنترل می‌باشد و نوع تغییر رخ داده در واریانس مشخصه‌های کیفی از نوع تغییرات پله‌ای فرض شده است. عملکرد روش پیشنهادی در تخمین نقطه تغییر براساس دو معیار توزیع تجربی برآوردها و هم‌چنین میانگین و انحراف استاندارد تخمین‌زننده نقطه تغییر به ازای شیفت‌های پله‌ای مختلف در واریانس متغیرهای فرآیند در قالب مطالعه شبیه‌سازی ارزیابی شده است. در نهایت به منظور توضیح بیشتر روش ارائه شده یک مثال عددی ارائه شده است. نتایج حاصل نشان‌دهنده عملکرد مناسب روش پیشنهادی در تخمین نقطه تغییر در ماتریس کواریانس فرآیندهای نرمال چند متغیره می‌باشد.

کلیدواژه‌ها


[1] Bersimis, S., Psarakis, S., & Panaretos, J. (7002). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 72(5), 512-542.

[2] Psarakis, S. (7011). The use of neural networks in statistical process control charts, Quality and Reliability Engineering International, 72(5), 141- 150.

[3] Atashgar, K. )7015(. Monitoring multivariate environments using artificial neural network approach: An overview. Scientia Iranica, 77(1), 7572-7542.

[4] Sullivan, J. H., & Woodall, W. H. (7000). Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations, IIE transactions, 27(1), 522-545. 

[5] Zamba, K. D., & Hawkins, D. M. (7001). A multivariate change-point model for statistical process control, Technometrics, 44(4), 525-545.

[6] Li, F., Runger, G. C., & Tuv, E. (7001). Supervised learning for change-point detection, International Journal of Production Research, 44(14), 7452-7414.

[7] Zarandi, M. H. F., & Alaeddini, A. (7010). A general fuzzy-statistical clustering approach for estimating the time of change in variable sampling control charts, Information Sciences, 140(11), 2022-2044.

[8] Nedumaran, G., Pignatiello Jr, J. J., & Calvin, J. A. (7000). Identifying the time of a step-change with 2  control charts, Quality Engineering, 12(7), 152-155.

[9] Niaki, S. T. A., & Khedmati, M. (7017). Detecting and estimating the time of a step-change in multivariate Poisson processes, Scientia Iranica, 15(2), 417-421.

[10] Niaki, S. T. A., & Abbasi, B. (7002). Skewness reduction approach in multi-attribute process monitoring, Communications in Statistics-Theory and Methods, 21(17), 7212-7275.

[11] Golnabi, S., & Houshmand, A. A. (1555). Multivariate shewhart x-bar chart”. Inter Stat 4.

[12] Allahyari, S., & Amiri, A. (7011). Clustering Approach for Change Point Estimation in Multivariate Normal Processes, Proceedings of the 41st International Conference on Computers & Industrial Engineering.

[13] Niaki, S. T. A., & Khedmati, M. (7012). Estimating the change point of the parameter vector of multivariate Poisson processes monitored by a multi-attribute T7 control chart, The International Journal of Advanced Manufacturing Technology, 14(5-17), 1175-1147.

[14] Movaffagh, A., & Amiri, A. (7012). Monotonic change point estimation in the mean vector of a multivariate normal process, The International Journal of Advanced Manufacturing Technology, 15(5-4), 1455-1501.

[15] Doǧ u, E., & Kocakoc, I. D. (7011). Estimation of change point in generalized variance control chart, Communications in Statistics—Simulation and Computation, 40(2), 245-212.

[16] Doğu, E., & Kocakoç, İ. D. (7012). A Multivariate Change Point Detection Procedure for Monitoring Mean and Covariance Simultaneously, Communications in Statistics-Simulation and Computation, 47(1), 1725-1755.

[17] Cheng, C. S., & Cheng, H .P. (7004). Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines, Expert Systems with Applications, 25(1), 154-701.

[18] Cheng, C. S., & Cheng, H. P. (7011). Using neural networks to detect the bivariate process variance shifts pattern, Computers & Industrial Engineering, 10(7), 715-724. 

[19] امیری، ا.، ملکی، م. ر. و درودیان، م. ه. )2343 .)پایش تغییرپذیری فرآیندهای چند مشخصه وصفی و متغیر با استفاده از شبکه عصبی مصنوعی، نشریه مدیریت تولید و عملیات، 4(1 ،) .36-12

[20] Ahmadzadeh, F. (7011). Change point detection with multivariate control charts by artificial neural network, The International Journal of Advanced Manufacturing Technology, 1-17.

[21] Ahmadzadeh, F., Lundberg, J., & Strömberg, T. (7012). Multivariate process parameter change identification by neural network, The International Journal of Advanced Manufacturing Technology, 15(5-17), 7711-7714.

[22] Atashgar, K., & Noorossana, R. (7011). An integrating approach to root cause analysis of a bivariate mean vector with a linear trend disturbance, The International Journal of Advanced Manufacturing Technology, 57(1-4), 402-470.

[23] Noorossana, R., Atashgar, K., & Saghaei, A. (7011). An integrated supervised learning solution for monitoring process mean vector, The International Journal of Advanced Manufacturing Technology, 51(5-4), 255-215 

[24] نورالسناء، ر. و آتشگر، ک. )1387 .)شناسایی نقطه تغییر در بردار میانگین فرآیند نرمال دو متغیره با تغییرات مونوتونیک، نشریه بین المللی مهندسی صنایع و مدیریت تولید، 21(1 ،) .1-13

[25] Amiri, A., Maleki, M. R., & Sogandi, F. (7011) Estimating the Time of a Step Change in the Multivariate-attribute Process Mean Using ANN and MLE, To appear in International Journal of Data Analysis Techniques and Strategies.

[26] Amiri, A., & Allahyari, S. (7017). Change point estimation methods for control chart post signal diagnostics: a literature review, Quality and Reliability Engineering International, 74(2), 122- 145.

[27] Atashgar, K. (7012). Identification of the change point: an overview, The International Journal of Advanced Manufacturing Technology, 14(5-17), 1112-1142.

[28] Memar, A. O., & Niaki, S. T. A. (1122). Multivariate variability monitoring using EWMA control charts based on squared deviation of observations from target, Quality and Reliability Engineering International, 17(8), 2164-2186.