ارایه رویکرد توسعه‌ای جدید DEA و TOPSIS برای رتبه‌بندی کارایی (مطالعه موردی شرکت‌های سیمان پذیرفته شده در بورس اوراق بهادار)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، دانشگاه پیام نور، تهران، ایران

2 گروه مهندسی صنایع، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

چکیده

برای افزایش توان رقابتی سازمان­ها، راه­کارهای متعددی وجود دارد. یکی از بهترین راه­کارهای ارائه شده، بهبود بهره­وری و کارایی است. روش تحلیل داده­ها (DEA) که یک روش ریاضی و از بهترین روش­های ناپارامتریک است، کارایی سازمان­ها را بر اساس متغیرهای ورودی و خروجی اندازه­گیری می­کند. واحدهایی که نمره کارایی آن­ها برابر یک شود، کارا هستند. همچنین با استفاده از روش اندرسون-پیترسون (AP) واحدهای کارا رتبه­بندی می­شوند. در این تحقیق، یک روش توسعه­ای جدید برای ارزیابی و رتبه­بندی سازمان­ها بر اساس امتیاز کارایی ارائه گردیده است. مطالعه موردی تحقیق ارزیابی کارایی شرکت­های سیمان پذیرفته شده در بورس اوراق بهادار است که با استفاده از مدل جمعی و اندرسون-پیترسون، رتبه­بندی شدند. همچنین رتبه شرکت­ها با استفاده از مدل توسعه­ای جدید و مدل TOPSIS محاسبه و با یکدیگر مقایسه گردید. نتایج نشان داد که رتبه شرکت­ها با استفاده از مدل توسعه­ای جدید (N-DEA) راه­حل مناسبی جهت محاسبه کارایی و رتبه­بندی واحدهای تصمیم­گیرنده است.

کلیدواژه‌ها


عنوان مقاله [English]

Introducing the new development approach of DEA and TOPSIS for performance rating (Case study of cement companies listed on the stock exchange)

نویسندگان [English]

  • Sayed Ali Banihashemi 1
  • Sayed Smaeel Najafi 2
1 Department of Industrial Engineering, Payame Noor University, Tehran, Iran
2 Department of Industrial Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
چکیده [English]

There are several ways to increase the competitiveness of organizations. One of the best solutions offered is to improve productivity and efficiency. Data Analysis (DEA), which is a mathematical method and one of the best non-parametric methods, measures the performance of organizations based on input and output variables. Units whose efficiency score equals one are efficient. Efficient units are also ranked using the Anderson-Peterson (AP) method. In this research, a new development method for evaluating and ranking organizations based on performance scores is presented. The case study is the evaluation of the performance of cement companies listed on the stock exchange, which were ranked using the collective model and Anderson-Peterson. Also, the rank of companies was calculated using the new development model and TOPSIS model and compared with each other. The results showed that the ranking of companies using the new development model (N-DEA) is a good solution for calculating the efficiency and ranking of decision-making units.

کلیدواژه‌ها [English]

  • data covering analysis
  • TOPSIS Method
  • Anderson-Peterson method
  • performance
[1] عبدالله­زاده، سهراب؛ عبدالله­زاده، جعفرصادق. (1394). رتبه­بندی بهبود عملکرد مراحل زنجیره تأمین در اثر استانداردسازی ملی، مجله تحقیق در عملیات در کاربردهای آن، سال دوازدهم، شماره سوم، صص 33-23.
[2] اصغرپور، محمدجواد. (1394). تصمیم­گیری چندمعیاره، چاپ چهاردهم، تهران: انتشارات دانشگاه تهران.
[3] علی­نژاد ساروکلائی، مهدی؛ ساعتی، صابر. (1395). ارائه مدل تحلیل پوششی داده­های مبتنی بر زمان در تحلیل صورت­های مالی شرکت­های پذیرفته شده در بورس اوراق بهادار تهران، مجله تحقیق در عملیات در کاربردهای آن، سال سیزدهم، شماره چهارم، صص 65-55.
[4] Benbarka, A. (2007). Assessment of manufacturing performance using data envelopment analysis. The University of Texas at Arlington. 
[5] Zanakis, S.H, Solomon, A., Wishart, N. & Dublish, S. (1998). Multi-attribute decision making: A simulation comparison of selection methods. European Journal of Operational Research, 107, 507–529.
[6] Banihashemi, S. A., & Rejaei, Z. (2015). Analysis of Digital Divide in Asia-Islamic Countries: A TOPSIS Approach. Journal of Asian Scientific Research,. 5(4), 165-176.
[7] Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253-290.
[8] Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
[9] Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
[10] Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of econometrics, 6(1), 21-37.
[11] Phillips, F. (2005). 25 years of data envelopment analysis. International journal of information technology & decision making, 4(3), 317-323.
[12] Rousseau, J. J., & Semple, J. H. (1995). Two-person ratio efficiency games. Management Science, 41(3), 435-441.
[13] Akçay, A. E., Ertek, G., & Büyüközkan, G. (2012). Analyzing the solutions of DEA through information visualization and data mining techniques: SmartDEA framework. Expert Systems with Applications, 39(9), 7763-7775.
[14] Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. Journal of the operational research society, 45(5), 567-578.
[15] Köksalan, M., & Tuncer, C. (2009). A DEA-based approach to ranking multi-alternatives. International Journal of Information Technology & Decision Making, 8(01), 29-54.
[16] Jenkins, L., & Anderson, M. (2004). A comparison of data envelopment analysis using fewer variables versus principal components. Dept of Business Administration Royal Military College of Canada, 15.
[17] Jahantigh, M., Hosseinzadeh Lotfi, F., & Moghaddas, Z. (2013). Ranking of DMUs by using TOPSIS and different ranking models in DEA. International Journal of Industrial Mathematics, 5(3), 217-225.
[18] Rezaie, K., Ramiyani, S. S., Nazari-Shirkouhi, S., & Badizadeh, A. (2014). Evaluating performance of Iranian cement firms using an integrated fuzzy AHP–VIKOR method. Applied Mathematical Modelling, 38(21), 5033-5046.
[19] Chen, J. F., Hsieh, H. N., & Do, Q. H. (2015). Evaluating teaching performance based on fuzzy AHP and comprehensive evaluation approach. Applied Soft Computing, 28, 100-108.
[20] Ng, C. Y. (2016). Evidential reasoning-based Fuzzy AHP approach for the evaluation of design alternatives’ environmental performances. Applied Soft Computing, 46, 381-397.
[21] Modak, M., Pathak, K., & Ghosh, K. K. (2017). Performance evaluation of outsourcing decision using a BSC and Fuzzy AHP approach: A case of the Indian coal mining organization. Resources Policy, 52, 181-191.
[22] Chang, S. C. (2011). Returns to scale in DEA models for performance evaluations. Technological Forecasting and Social Change, 78(8), 1389-1396.
[23] Fenyves, V., Tarnóczi, T., & Zsidó, K. (2015). Financial Performance Evaluation of agricultural enterprises with DEA Method. Procedia Economics and Finance, 32, 423-431.
[24] Wanke, P., Barros, C. P., & Nwaogbe, O. R. (2016). Assessing productive efficiency in Nigerian airports using Fuzzy-DEA. Transport Policy, 49, 9-19.
[25] Ahn, H., & Novoa, N. V. (2016). The decoy effect in relative performance evaluation and the debiasing role of DEA. European Journal of Operational Research, 249(3), 959-967.
[26] Gong, S., Shao, C., & Zhu, L. (2017). Energy efficiency evaluation based on DEA integrated factor analysis in ethylene production. Chinese Journal of Chemical Engineering. In Press.
[27] Martí, L., Martín, J. C., & Puertas, R. (2017). A DEA-logistics performance index. Journal of Applied Economics, 20(1), 169-192.
[28] Tavana, M., Li, Z., Mobin, M., Komaki, M., & Teymourian, E. (2016). Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Systems with Applications, 50, 17-39.
[29] Rosić, M., Pešić, D., Kukić, D., Antić, B., & Božović, M. (2017). Method for selection of optimal road safety composite index with examples from DEA and TOPSIS method. Accident Analysis & Prevention, 98, 277-286.
[30] Sinuany‐Stern, Z., Mehrez, A., & Hadad, Y. (2000). An AHP/DEA methodology for ranking decision making units. International Transactions in Operational Research, 7(2), 109-124.
[31] Korpela, J., Lehmusvaara, A., & Nisonen, J. (2007). Warehouse operator selection by combining AHP and DEA methodologies. International Journal of Production Economics, 108(1), 135-142.
[32] Azadeh, A., Ghaderi, S. F., & Izadbakhsh, H. (2008). Integration of DEA and AHP with computer simulation for railway system improvement and optimization. Applied Mathematics and Computation, 195(2), 775-785.
[33] Lin, M. I., Lee, Y. D., & Ho, T. N. (2011). Applying integrated DEA/AHP to evaluate the economic performance of local governments in China. European Journal of Operational Research, 209(2), 129-140.
[34] Yu, P., & Lee, J. H. (2013). A hybrid approach using two-level SOM and combined AHP rating and AHP/DEA-AR method for selecting optimal promising emerging technology. Expert Systems with Applications, 40(1), 300-314.
[35] Ar, I. M., & Kurtaran, A. (2013). Evaluating the relative efficiency of commercial banks in Turkey: an integrated AHP/DEA approach. International Business Research, 6(4), 129.
[36] Altamirano-Corro, A., & Peniche-Vera, R. (2014). Measuring the institutional efficiency using dea and ahp: the case of a mexican university. Journal of applied research and technology, 12(1), 63-71.
[37] Kumar, A., Shankar, R., & Debnath, R. M. (2015). Analyzing customer preference and measuring relative efficiency in telecom sector: A hybrid fuzzy AHP/DEA study. Telematics and Informatics, 32(3), 447-462.
[38] Lai, P. L., Potter, A., Beynon, M., & Beresford, A. (2015). Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique. Transport Policy, 42, 75-85.
[39] Li, X., Liu, Y., Wang, Y., & Gao, Z. (2016). Evaluating transit operator efficiency: An enhanced DEA model with constrained fuzzy-AHP cones. Journal of Traffic and Transportation Engineering (English Edition), 3(3), 215-225.
[40] Otay, İ., Öztayşi, B., Onar, S. Ç., & Kahraman, C. (2017). Multi-expert Performance Evaluation of Healthcare Institutions Using an Integrated Intuitionistic Fuzzy AHP & DEA Methodology. Knowledge-Based Systems.
[41] Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2017). A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Materials & Design, 121, 237-253.
[42] Babaee, S., Bagherikahvarin, M., Sarrazin, R., Shen, Y., & Hermans, E. (2015). Use of DEA and PROMETHEE II to Assess the Performance of Older Drivers. Transportation research Procedia, 10, 798-808.
[43] Bagherikahvarin, M., & De Smet, Y. (2016). A ranking method based on DEA and PROMETHEE II (a rank based on DEA & PR. II). Measurement, 89, 333-342.