طراحی یک مدل ریاضی جدید چند هدفه برای زمان‌بندی ماشین‌آلات چندکاره با در نظر گرفتن کیفیت قطعات تولیدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مدیریت تحقیق در عملیات، پردیس بین الملل، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد گروه آموزشی مدیریت دانشکده علوم اداری و اقتصادی دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشیار، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

4 دانشیار گروه آموزشی مدیریت دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد

چکیده

هدف این مقاله طراحی یک مدل برنامه‌ریزی ریاضی چند هدفه برای زمان‌بندی ماشین‌آلات چندکاره در یک سلول تولیدی است. بدین منظور، یک الگوریتم علف هرز مهاجم چندهدفه ارائه شد و نتایج حل آن با الگوریتم های ازدحام ذرات چندهدفه و ژنتیک مقایسه گردید. با توجه به روش تاگوچی، پارامترهای الگوریتم تنظیم گردید. نوآوری این مقاله از یک‌سو، در اجرای ایده سرعت پردازش ماشین‌آلات در تولید قطعات با کیفیت‌های متفاوت است. به عبارت دیگر، برای تضمین کیفیت، سرعت پردازش و میزان بارگیری در ماشین تنظیم می‌گردد و از سوی دیگر، الگوریتم چندهدفه با ساختار جدید کروموزونی برای بهینه سازی مدل طراحی شد. برای تحلیل عملکرد الگوریتم های حل، سی مسألة نمونه با ابعاد مختلف، طراحی و هریک ده نوبت اجرا شد. تحلیل نتایج نشان داد الگوریتم مبتنی بر علف هرز مهاجم چندهدفه بیش از سایر الگوریتم‌ها قادر به حل و پاسخ‌گویی به مسائل بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a new multi-objective mathematical model for scheduling multifunctional machines taking into account the quality of manufactured parts 

نویسندگان [English]

  • Mohammad Esfandiar 1
  • Mostafa Kazemi 2
  • Bahman Naderi 3
  • Alireza Pouya 4
1 PhD Student in Operations Research Management, International Campus, Ferdowsi University of Mashhad,   
2 Professor, Faculty of Administrative Sciences and Economics, Department of Management, Ferdowsi University of Mashhad   
3 Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, 
4 Associate Professor, Faculty of Administrative Sciences and Economics, Department of Management, Ferdowsi University of Mashhad, 
چکیده [English]

The purpose of this paper is to design a multi-objective mathematical programming model for scheduling multifunctional machines in a production cell. For this purpose, a multiobjective invasive weed algorithm was proposed and its solution results were compared with multi-objective and genetic particle swarm algorithms. Algorithm parameters were adjusted according to Taguchi method. The innovation of this article, on the one hand, is in implementing the idea of machine processing speed in the production of parts with different qualities. In other words, to ensure quality, processing speed and loading rate are adjusted in the machine, and on the other hand, a multi-objective algorithm with a new chromosome structure was designed to optimize the model. To analyze the performance of solution algorithms, thirty sample problems with different dimensions were designed and performed ten times each. The analysis of the results showed that the multi-objective invasive weed-based algorithm was able to solve and answer problems more than other algorithms. 
 
 

کلیدواژه‌ها [English]

  • scheduling
  • Mathematical Modeling
  • multifunction machine
  • flexible production
  • parts quality 
[1] K.R. Baker, (1974). Introduction to Sequencing and Scheduling, John Wiley, NY
[2] Mungwattana, A. (2000). Design of Cellular Manufacturing Systems for Dynamic and Uncertain Production Requirements with Presence of Routing Flexibility. Blacksburg, Virginia: Dissertation submitted to the Faculty of theVirginia Polytechnic Institute and State University.
[3] Wemmerlov, R. and Vakharia, A. J. (1991). Job and family scheduling in a flow-line manufacturing cell, IIE Transaction, 23, 383-393
[4] Naderi, B. and A. Azab (2015) Modeling and scheduling a flexible manufacturing cell with parallel processing capability. CIRP Journal of Manufacturing Science and Technology. 11: p. 18-27.
[5] J.B. Levin, D. Dutta. (1996)  PMPS: A Prototype CAPP System for Parallel Machining. Journal of Engineering for Industry, 118(3) 406-414.
[6] Battaïa, O. et al. (2013) Equipment location in machining transfer lines with multispindle heads. Journal of Mathematical Modelling and Algorithms: p. 1-17.
[7] Guschinskaya, O. et al. (2009) Minimizing makespan for multi-spindle head machines with a mobile table. Computers & Operations Research, 2009. 36(2): p. 344-357.
[8] Battaïa, O. et al. (2014).Combinatorial techniques to optimally customize an automated production line with rotary transfer and turrets. IIE Transactions, 2014. 46(9): p.867-879.
[9] http://www.techspex.com (Model NZ1500 T2Y; Date: Feb 2014)
[10] http://www.fabricatingandmetalworking.com; Date: Feb 2014.
[11] Fanjul-Peyro, L. F. Perea, and R. Ruiz, (2017) Models and matheuristics for the unrelated parallel machine-scheduling problem with additional resources.European Journal of Operational Research. 260(2): p. 482-493.
[12] Low, C. and G.H. Wu. (2016) Unrelated parallel machine scheduling with controllable processing times and eligibility constraints to minimize the makespan. Journal of Industrial and Production Engineering,. 33(4): p. 286-293.
[13] Rajkanth, R. C. Rajendran, and H. Ziegler. (2017) a single machine and on identical parallel machines. The International Journal of Advanced Manufacturing Technology.88 (5-8): p.1923-1936.
[14] Miller, P.C. (1989). Lathes turn to other tasks. Tooling & Production, 54(12): p.54-60.
[15] Miska, K.H. (1990). Driven tools turn on turning centers. Manufacturing Engineering. 104(5): p. 63-66.
[16] Date, N. P. Krishnaswami, and V.S.K. Motipalli, (2009). Automated process planning method to machine A B-Spline free-form feature on a mill–turn center. Computers & Industrial Engineering. 56(1): p. 198-207.
[17] Kim, Y.S. et al.(1997) Geometric reasoning for mill-turn machining process planning. Computers & industrial engineering. 33 (3-4): p. 501-504.
[18] Waiyagan, K. and E.L. Bohez. (2009). intelligent feature based process planning for fiveaxis mill-turn parts. Computers in Industry. 60(5): p. 296-316.
[19] Levin, J.B. and D. Dutta. (1992) Computer-aided process planning for parallel machines. Journal of Manufacturing Systems. 11(2): p. 79-92.
[20] Azab, A. and B. Naderi.(2014) A variable neighborhood search metaheuristic for cellular manufacturing with multitask machine tools. Procedia CIRP. 20: p.50-55.
[21] Yip-Hoi, D. and D. Dutta. (1996). A genetic algorithm application for sequencing operations in process planning for parallel machining. IIE transactions. 28(1): p. 55-68.
[22] Chiu, N.C. S.C. Fang and Y.S. Lee. (1999). Sequencing parallel machining operations by genetic algorithms. Computers & industrial engineering, 36(2): p. 259-280.
[23] Norman, B.A. and J.C. Bean. (2000). Scheduling operations on parallel machine tools. Iie Transactions. 32(5): p. 449-459.V
[24] Kundu, D. Suresh, K. Ghosh, S. Das, S. Panigrahi, B. K. & Das, S. (2011). Multi-objective optimization with artificial weed colonies. Information Sciences, 181, 2441-2454.
[25] DEB, K. AGRAWAL, S. PRATAP, A. & MEYARIVAN, T. (2000). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II.In:
 [26] CHOENAUER, M. DEB, K. RUDOLPH, G. YAO,       X. LUTTON, E. MERELO, J. J. & SCHWEFEL, H.P. (eds.) .(2000) Parallel Problem Solving from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg.
[26] COELLO, C. A. C. & LECHUGA, M. S. (2002) MOPSO: a proposal for multiple objective particle swarm optimization.Evolutionary Computation, CEC '02. Proceedings of the 2002 Congress on. 1051-1056.
[27] POLI, R. KENNEDY, J. & BLACKWELL, T. (2007).Particle swarm optimization. Swarm Intelligence, 1, 33-57.
[28] N. Karimi, M. Zandieh, and H. R. Karamooz. (2010)"Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach, Expert Systems with Applications, vol. 37, pp. 4024-4032, 6.
[29] E. Zitzler. (1999) Evolutionary algorithms for multiobjective optimization: Methods and applications vol. 63: Citeseer.
[30] J. R. Schott. (1995). "Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization, DTIC Document.
[31] C. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen. (2007) Evolutionary algorithms for solving multi-objective problems: Springer Science & Business Media.
[32] T. L. Saaty, (1989). "Group Decision Making and the AHP, in The Analytic Hierarchy Process: Applications and Studies, B. L. Golden, E. A. Wasil, and P. T. Harker, Eds. ed Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 59-67.